Клеточная стенка у грибов

Клеточная стенка у грибов

Химический состав и структура клеточной стенки грибов

Клеточная стенка грибов многослойная, при этом разные слои образованы различающимися по химическому составу структурными углеводами, которые по химическому составу можно разделить на 3 группы:

полимеры глюкозы (глюкан, хитин, целлюлоза). Глюканы составляют наружный слой клеточной стенки большинства грибов. Внутренний слой грибной клеточной стенки образован цепочками хитина, придавая ей жесткость. Хитин замещает целлюлозу, которая у большинства грибов отсутствует, но входит в состав клеточной стенки оомицетов, которые в настоящее время к типичным грибам не относятся. Деацетилированный хитин получил название хитозан, который в комплексе с хитином образует клеточную стенку зигомицетов.

полимеры других моносахаридов (маннозы, галактозы и др.) в отличие от высших растений, где они составляют основу матрикса под общим названием гемицеллюлоза, менее характерны для грибов. Исключение составляют дрожжи, в клеточных стенках которых особенно много полимеров маннозы, называемых маннаны. Предполагают, что такой состав стенки лучше обеспечивает почкование.

полимеры углеводов, ковалентно связанные с пептидами (гликопротеины) формируют срединный слой многослойной клеточной стенки и играют важную роль, как в поддержании структурной целостности клеток, так и в ее обменных процессах с окружающей средой.

К другим специфическим особенностям грибной клетки относятся: отсутствие пластид, что сближает ее с клеткой животных;

Отсутствие крахмала, который у эумицетов замещается полисахаридом, близким к животному крахмалу гликогену, у оомицетов – полисахаридом, близкому к ламинарину бурых водорослей. Вырабатывается и целый ряд специфических для грибов запасных углеводов.

Выработка специфических вторичных метаболитов, из которых большую роль играют антибиотики, фито– и микотоксины, фитогормоны.

К специфическим особенностям грибов относятся также гетерокариоз и парасексуальный процесс.

У грибов очень широко распространено явление гетерокариоза или разноядерности, при котором в одной клетке длительное время сохраняются ядра, гетероаллельные по некоторым генам. Гетерокариоз заменяет гаплоидным грибам гетерозиготность и способствует быстрой адаптации грибов к меняющимся условиям. Наличие разноядерности обусловлено рядом специфических особенностей грибов:

1. наличие более одного ядра в клетке

2. специфическое строение клеточной перегородки, в которой имеется одно или несколько сквозных отверстий, называемых порами, через которые ядра могут мигрировать из одной клетки в другую

3. гифы внутри одной колонии и даже разных близко расположенных колоний, выросших из разных спор одного вида гриба часто срастаются, в результате чего возможен обмен ядрами разных штаммов.

Парасексуальный (псевдополовой) процесс. Если в гетерокариотичных клетках сливаются ядра, гетероаллельные по какому-либо локусу, возникает гетерозиготное диплоидное ядро. Оно может попасть в спору и дать начало диплоидному гетерозиготному клону. В процессе митозов диплоидные ядра могут возвращаться в гаплоидное состояние вследствие потери одного набора хромосом или в них может происходить обмен участками хромосом (митотический кроссинговер). Оба процесса сопровождаются рекомбинацией родительских генов и, следовательно, фенотипов. Парасексуальная (бесполовая) рекомбинация очень редкое явление, не превышающее одного ядра на миллион, но вследствие огромного числа ядер в мицелии постоянно наблюдается в популяциях грибов.

Размножение – вегетативное, бесполое, половое.

Вегетативное – фрагментация таллома, образование хламидоспор, которые после периода покоя прорастают в мицелий, почкование у дрожжей.

Бесполое размножение у разных грибов может осуществляться подвижными и неподвижными спорами. Зооспоры образуют относительно небольшая группа грибов и грибоподобных организмов – водные и некоторые наземные, у которых отчетливо прослеживаются генетические связи с водными грибами и водорослями. Структура жгутиков является важным диагностическим признаком при отнесении к определенному царству. У подавляющего большинства грибов при бесполом размножении образуются неподвижные споры, что указывает на их очень давний выход на сушу. По месту формирования и локализации различают эндогенные, образующиеся в спорангиях спорангиоспоры и экзогенные (конидии), развивающиеся на специальных гифах – конидиеносцах. Конидии образуются у большинства грибов (аскомицеты, базидиомицеты, некоторые зигомицеты) составляя конидиальное спороношение, которое отличается огромным многообразием и широко используется для диагностики грибов.

Половое размножение грибов имеет свою специфику как в морфологии полового процесс, так и в механизмах генетической и физиологической регуляции пола и передачи наследственной информации.

Соматогамия – самый распространенный и наиболее простой тип полового процесса, заключается в слиянии двух не дифференцированных на гаметы соматических клеток. Иногда он протекает даже без слияния клеток – сливаются ядра внутри клетки. Встречается у большинства базидиомицетов, сумчатых дрожжей и некоторых др. таксонов.

Гаметангиогамия – на гаплоидном мицелии обособляются гаметангии, при половом процессе сливается их содержимое. Такой половой процесс характерен для большинства сумчатых грибов. Вариантом гаметангиогамии является зигогамия у зигомицетов.

Гаметогамия в виде изо- гетеро и оогамии у грибов встречается значительно реже, чем у других эукариот. Изо- и гетерогамия встречается лишь у хитридиомицетов. Классическая оогамия с образованием сперматозоидов и яйцеклеток у грибов не выражена, а встречаются сильно измененные варианты.

По особенностям регуляции пола у грибов выделяют несколько типов полового процесса

Гинандромиксис можно рассмотреть на примере двудомных оомицетов, у которых оогонии и антеридии развиваются на разных талломах, например фитофтора или картофельный гриб. Если генетически однородный штамм выращивать в монокультуре, то он размножается только бесполым способом. Если рядом оказываются мицелии двух штаммов, то у них прослеживаются морфогенетические изменения под действием химических выделений стероидной природы – половых феромонов. Антеридиол индуцирует образование антеридиев у партнера, а оогониол –оогониев. При этом регуляция пола имеет относительный характер: будет ли штамм образовывать антеридии или же оогонии, зависит от количественного соотношения соответствующих феромонов у него и его партнера. Отсюда название полового процесса – гинандромиксис.

Димиксис или гетероталлизм. Уже давно было подмечено, что грибы могут быть гомо- или гетероталличными. У гомоталличных видов при половом процессе сливаются генетически идентичные ядра внутри мицелия. У гетероталличных видов для прохождения полового цикла необходимо на каком-то этапе (различном у разных видов грибов) слияние потомков спор (точнее, их ядер). Для половой совместимости двух штаммов необходимо генетическое различие (гетероаллельность) в определенных локусах, называемых локусами спаривания. У большинства грибов (зигомицеты, аскомицеты, часть базидиомицетов) имеется один локус спаривания с двумя аллелями. Локус спаривания состоит из нескольких генов, котрые управляют синтезом половых феромонов. Такой гетероталлизм называется однофакторным или биполярным. Потомство таких грибов после мейоза разделяется на две самонесовместимые, но взаимно совместимые группы в соотношении 1:1, т.е. вероятность родственного(инбридинга) и неродственного(аутбридинга) скрещивания составляет как и у двуполых высших эукариот 50%.

В геноме высших базидиальных грибов имеется два локуса спаривания – A и B, причем совместимы друг с другом только штаммы гетероаллельные по обоим локусам (Ax Bx совместим с Ay By, но не с Ax By и Ay Bx). Такой гетероталлизм называют двухфакторным или тетраполярным. Он снижает вероятность инбридинга до 25 %.

Диафоромиксис – у высших базидиомицетов имеется не два, а много аллелей локуса спаривания, случайно встречающихся у разных штаммов, слагающих популяцию. Такой контроль спаривания обеспечивает 100% вероятность аутбридинга, так как штаммы, имеющие разные аллели, взаимносовместимы, а аллелей очень много. В результате образуются панмиксные гибридные популляции.

Жизненные циклы грибов также разнообразны как и сами грибы. Основные циклы, их принадлежность к отделам грибов

1.Бесполый цикл характерен для огромной группы несовершенных или митогрибов, утративших половое размножение. Деление их ядер исключительно митотические. Подавляющее большинство митогрибов относится к сумчатым грибам, но в связи с утратой полового процесса, составляют формальную группу несовершенных грибов или дейтеромицетов.

2. Гаплоидный цикл. Вегетативный таллом несет гаплоидные ядра. После полового процесса (сингамии) диплоидная зигота (обычно после периода покоя) делится мейотически – зиготический мейоз. Характерен для зигомицетов и многих хитридиомицетов.

3. Гаплоидно-дикариотический цикл характеризуется тем, что после слияния содержимого гаметангиев (гаметангиогамия) или соматических клеток гаплоидного мицелия (соматогамия) ядра образуют дикарионы (пары генетически разных ядер). Они синхронно делятся, образуя дикариотический мицелий. Половой процесс завершается слиянием ядер дикариона, образующаяся зигота делится мейозом без периода покоя. Мейоспоры составляют половое спороношение сумчатых и базидиальных грибов в виде аскоспор и базидиоспор. При их прорастании образуется гаплоидный мицелий. У подавляющего большинства сумчатых грибов (кроме дрожжей и тафриновых грибов) в жизненном цикле преобладает гаплоидная фаза в виде вегетативного мицелия (анаморфа), дикариотическая фаза кратковременна и представлена аскогенными гифами, на которых образуются сумки (телеоморфа). У базидиальных грибов в жизненном цикле преобладает дикариотическая фаза, гаплоидная фаза кратковременна.

4. Гаплоидно-диплоидный цикл в виде изоморфной смены поколений у грибов встречается редко (некоторые дрожжи и водные хитридиомицеты).

5. Диплоидный цикл характерен для оомицетов и некоторых сумчатых дрожжей. Вегетативный таллом диплоидный, мейоз гаметический, наблюдается при формировании гаметангиев или гамет.

3. Экологические группы грибов.

Грибы и грибоподобные организмы входят во все наземные и водные экосистемы, как важнейшая часть гетеротрофного блока, вместе с бактериями занимая трофический уровень редуцентов. Широкое распространение грибов в биосфере определяется рядом важнейших особенностей:

1. Наличие у большинства мицелиальной структуры таллома. (позволяет быстро осваивать субстрат, иметь большую поверхность контакта со средой).

2. Большая скорость роста и размножения, позволяющие в короткие сроки заселять большие массы субстрата, образуя огромное число спор и распространять их на большие расстояния.

3. Высокая метаболическая активность, проявляющаяся в широком диапазоне значений экологических факторов.

4. Высокая скорость генетической рекомбинации, значительная биохимическая изменчивость, экологическая пластичность.

Химический состав и структура клеточной стенки грибов

Способность быстро переходить к состоянию анабиоза, переживать неблагоприятные условия в течение длительного времени.

Главным экологическим фактором для грибов является пищевой субстрат. По отношению к этому фактору выделяют основные группы грибов, которые называются трофическими группами.

1. Сапротрофы – обитают на растительных остатках

4. Краткая характеристика отделов грибов.

Дата добавления: 2016-07-11; просмотров: 3437;

Похожие статьи:

Химический состав и структура клеточной стенки грибов

Клеточная стенка грибов многослойная, при этом разные слои образованы различающимися по химическому составу структурными углеводами, которые по химическому составу можно разделить на 3 группы:

полимеры глюкозы (глюкан, хитин, целлюлоза). Глюканы составляют наружный слой клеточной стенки большинства грибов. Внутренний слой грибной клеточной стенки образован цепочками хитина, придавая ей жесткость. Хитин замещает целлюлозу, которая у большинства грибов отсутствует, но входит в состав клеточной стенки оомицетов, которые в настоящее время к типичным грибам не относятся. Деацетилированный хитин получил название хитозан, который в комплексе с хитином образует клеточную стенку зигомицетов.

полимеры других моносахаридов (маннозы, галактозы и др.) в отличие от высших растений, где они составляют основу матрикса под общим названием гемицеллюлоза, менее характерны для грибов. Исключение составляют дрожжи, в клеточных стенках которых особенно много полимеров маннозы, называемых маннаны. Предполагают, что такой состав стенки лучше обеспечивает почкование.

полимеры углеводов, ковалентно связанные с пептидами (гликопротеины) формируют срединный слой многослойной клеточной стенки и играют важную роль, как в поддержании структурной целостности клеток, так и в ее обменных процессах с окружающей средой.

К другим специфическим особенностям грибной клетки относятся: отсутствие пластид, что сближает ее с клеткой животных;

Отсутствие крахмала, который у эумицетов замещается полисахаридом, близким к животному крахмалу гликогену, у оомицетов – полисахаридом, близкому к ламинарину бурых водорослей. Вырабатывается и целый ряд специфических для грибов запасных углеводов.

Выработка специфических вторичных метаболитов, из которых большую роль играют антибиотики, фито– и микотоксины, фитогормоны.

К специфическим особенностям грибов относятся также гетерокариоз и парасексуальный процесс.

У грибов очень широко распространено явление гетерокариоза или разноядерности, при котором в одной клетке длительное время сохраняются ядра, гетероаллельные по некоторым генам. Гетерокариоз заменяет гаплоидным грибам гетерозиготность и способствует быстрой адаптации грибов к меняющимся условиям. Наличие разноядерности обусловлено рядом специфических особенностей грибов:

1. наличие более одного ядра в клетке

2. специфическое строение клеточной перегородки, в которой имеется одно или несколько сквозных отверстий, называемых порами, через которые ядра могут мигрировать из одной клетки в другую

3. гифы внутри одной колонии и даже разных близко расположенных колоний, выросших из разных спор одного вида гриба часто срастаются, в результате чего возможен обмен ядрами разных штаммов.

Парасексуальный (псевдополовой) процесс. Если в гетерокариотичных клетках сливаются ядра, гетероаллельные по какому-либо локусу, возникает гетерозиготное диплоидное ядро. Оно может попасть в спору и дать начало диплоидному гетерозиготному клону. В процессе митозов диплоидные ядра могут возвращаться в гаплоидное состояние вследствие потери одного набора хромосом или в них может происходить обмен участками хромосом (митотический кроссинговер). Оба процесса сопровождаются рекомбинацией родительских генов и, следовательно, фенотипов. Парасексуальная (бесполовая) рекомбинация очень редкое явление, не превышающее одного ядра на миллион, но вследствие огромного числа ядер в мицелии постоянно наблюдается в популяциях грибов.

Размножение – вегетативное, бесполое, половое.

Вегетативное – фрагментация таллома, образование хламидоспор, которые после периода покоя прорастают в мицелий, почкование у дрожжей.

Бесполое размножение у разных грибов может осуществляться подвижными и неподвижными спорами. Зооспоры образуют относительно небольшая группа грибов и грибоподобных организмов – водные и некоторые наземные, у которых отчетливо прослеживаются генетические связи с водными грибами и водорослями. Структура жгутиков является важным диагностическим признаком при отнесении к определенному царству. У подавляющего большинства грибов при бесполом размножении образуются неподвижные споры, что указывает на их очень давний выход на сушу. По месту формирования и локализации различают эндогенные, образующиеся в спорангиях спорангиоспоры и экзогенные (конидии), развивающиеся на специальных гифах – конидиеносцах. Конидии образуются у большинства грибов (аскомицеты, базидиомицеты, некоторые зигомицеты) составляя конидиальное спороношение, которое отличается огромным многообразием и широко используется для диагностики грибов.

Половое размножение грибов имеет свою специфику как в морфологии полового процесс, так и в механизмах генетической и физиологической регуляции пола и передачи наследственной информации.

Соматогамия – самый распространенный и наиболее простой тип полового процесса, заключается в слиянии двух не дифференцированных на гаметы соматических клеток. Иногда он протекает даже без слияния клеток – сливаются ядра внутри клетки. Встречается у большинства базидиомицетов, сумчатых дрожжей и некоторых др.

Строение клеточных стенок гриба и их разрушение

таксонов.

Гаметангиогамия – на гаплоидном мицелии обособляются гаметангии, при половом процессе сливается их содержимое. Такой половой процесс характерен для большинства сумчатых грибов. Вариантом гаметангиогамии является зигогамия у зигомицетов.

Гаметогамия в виде изо- гетеро и оогамии у грибов встречается значительно реже, чем у других эукариот. Изо- и гетерогамия встречается лишь у хитридиомицетов. Классическая оогамия с образованием сперматозоидов и яйцеклеток у грибов не выражена, а встречаются сильно измененные варианты.

По особенностям регуляции пола у грибов выделяют несколько типов полового процесса

Гинандромиксис можно рассмотреть на примере двудомных оомицетов, у которых оогонии и антеридии развиваются на разных талломах, например фитофтора или картофельный гриб. Если генетически однородный штамм выращивать в монокультуре, то он размножается только бесполым способом. Если рядом оказываются мицелии двух штаммов, то у них прослеживаются морфогенетические изменения под действием химических выделений стероидной природы – половых феромонов. Антеридиол индуцирует образование антеридиев у партнера, а оогониол –оогониев. При этом регуляция пола имеет относительный характер: будет ли штамм образовывать антеридии или же оогонии, зависит от количественного соотношения соответствующих феромонов у него и его партнера. Отсюда название полового процесса – гинандромиксис.

Димиксис или гетероталлизм. Уже давно было подмечено, что грибы могут быть гомо- или гетероталличными. У гомоталличных видов при половом процессе сливаются генетически идентичные ядра внутри мицелия. У гетероталличных видов для прохождения полового цикла необходимо на каком-то этапе (различном у разных видов грибов) слияние потомков спор (точнее, их ядер). Для половой совместимости двух штаммов необходимо генетическое различие (гетероаллельность) в определенных локусах, называемых локусами спаривания. У большинства грибов (зигомицеты, аскомицеты, часть базидиомицетов) имеется один локус спаривания с двумя аллелями. Локус спаривания состоит из нескольких генов, котрые управляют синтезом половых феромонов. Такой гетероталлизм называется однофакторным или биполярным. Потомство таких грибов после мейоза разделяется на две самонесовместимые, но взаимно совместимые группы в соотношении 1:1, т.е. вероятность родственного(инбридинга) и неродственного(аутбридинга) скрещивания составляет как и у двуполых высших эукариот 50%.

В геноме высших базидиальных грибов имеется два локуса спаривания – A и B, причем совместимы друг с другом только штаммы гетероаллельные по обоим локусам (Ax Bx совместим с Ay By, но не с Ax By и Ay Bx). Такой гетероталлизм называют двухфакторным или тетраполярным. Он снижает вероятность инбридинга до 25 %.

Диафоромиксис – у высших базидиомицетов имеется не два, а много аллелей локуса спаривания, случайно встречающихся у разных штаммов, слагающих популяцию. Такой контроль спаривания обеспечивает 100% вероятность аутбридинга, так как штаммы, имеющие разные аллели, взаимносовместимы, а аллелей очень много. В результате образуются панмиксные гибридные популляции.

Жизненные циклы грибов также разнообразны как и сами грибы. Основные циклы, их принадлежность к отделам грибов

1.Бесполый цикл характерен для огромной группы несовершенных или митогрибов, утративших половое размножение. Деление их ядер исключительно митотические. Подавляющее большинство митогрибов относится к сумчатым грибам, но в связи с утратой полового процесса, составляют формальную группу несовершенных грибов или дейтеромицетов.

2. Гаплоидный цикл. Вегетативный таллом несет гаплоидные ядра. После полового процесса (сингамии) диплоидная зигота (обычно после периода покоя) делится мейотически – зиготический мейоз. Характерен для зигомицетов и многих хитридиомицетов.

3. Гаплоидно-дикариотический цикл характеризуется тем, что после слияния содержимого гаметангиев (гаметангиогамия) или соматических клеток гаплоидного мицелия (соматогамия) ядра образуют дикарионы (пары генетически разных ядер). Они синхронно делятся, образуя дикариотический мицелий. Половой процесс завершается слиянием ядер дикариона, образующаяся зигота делится мейозом без периода покоя. Мейоспоры составляют половое спороношение сумчатых и базидиальных грибов в виде аскоспор и базидиоспор. При их прорастании образуется гаплоидный мицелий. У подавляющего большинства сумчатых грибов (кроме дрожжей и тафриновых грибов) в жизненном цикле преобладает гаплоидная фаза в виде вегетативного мицелия (анаморфа), дикариотическая фаза кратковременна и представлена аскогенными гифами, на которых образуются сумки (телеоморфа). У базидиальных грибов в жизненном цикле преобладает дикариотическая фаза, гаплоидная фаза кратковременна.

4. Гаплоидно-диплоидный цикл в виде изоморфной смены поколений у грибов встречается редко (некоторые дрожжи и водные хитридиомицеты).

5. Диплоидный цикл характерен для оомицетов и некоторых сумчатых дрожжей. Вегетативный таллом диплоидный, мейоз гаметический, наблюдается при формировании гаметангиев или гамет.

3. Экологические группы грибов.

Грибы и грибоподобные организмы входят во все наземные и водные экосистемы, как важнейшая часть гетеротрофного блока, вместе с бактериями занимая трофический уровень редуцентов. Широкое распространение грибов в биосфере определяется рядом важнейших особенностей:

1. Наличие у большинства мицелиальной структуры таллома. (позволяет быстро осваивать субстрат, иметь большую поверхность контакта со средой).

2. Большая скорость роста и размножения, позволяющие в короткие сроки заселять большие массы субстрата, образуя огромное число спор и распространять их на большие расстояния.

3. Высокая метаболическая активность, проявляющаяся в широком диапазоне значений экологических факторов.

4. Высокая скорость генетической рекомбинации, значительная биохимическая изменчивость, экологическая пластичность.

5. Способность быстро переходить к состоянию анабиоза, переживать неблагоприятные условия в течение длительного времени.

Главным экологическим фактором для грибов является пищевой субстрат. По отношению к этому фактору выделяют основные группы грибов, которые называются трофическими группами.

1. Сапротрофы – обитают на растительных остатках

4. Краткая характеристика отделов грибов.

Дата добавления: 2016-07-11; просмотров: 3436;

Похожие статьи:

Химический состав и структура клеточной стенки грибов

Клеточная стенка грибов многослойная, при этом разные слои образованы различающимися по химическому составу структурными углеводами, которые по химическому составу можно разделить на 3 группы:

полимеры глюкозы (глюкан, хитин, целлюлоза). Глюканы составляют наружный слой клеточной стенки большинства грибов. Внутренний слой грибной клеточной стенки образован цепочками хитина, придавая ей жесткость. Хитин замещает целлюлозу, которая у большинства грибов отсутствует, но входит в состав клеточной стенки оомицетов, которые в настоящее время к типичным грибам не относятся. Деацетилированный хитин получил название хитозан, который в комплексе с хитином образует клеточную стенку зигомицетов.

полимеры других моносахаридов (маннозы, галактозы и др.) в отличие от высших растений, где они составляют основу матрикса под общим названием гемицеллюлоза, менее характерны для грибов. Исключение составляют дрожжи, в клеточных стенках которых особенно много полимеров маннозы, называемых маннаны. Предполагают, что такой состав стенки лучше обеспечивает почкование.

полимеры углеводов, ковалентно связанные с пептидами (гликопротеины) формируют срединный слой многослойной клеточной стенки и играют важную роль, как в поддержании структурной целостности клеток, так и в ее обменных процессах с окружающей средой.

К другим специфическим особенностям грибной клетки относятся: отсутствие пластид, что сближает ее с клеткой животных;

Отсутствие крахмала, который у эумицетов замещается полисахаридом, близким к животному крахмалу гликогену, у оомицетов – полисахаридом, близкому к ламинарину бурых водорослей. Вырабатывается и целый ряд специфических для грибов запасных углеводов.

Выработка специфических вторичных метаболитов, из которых большую роль играют антибиотики, фито– и микотоксины, фитогормоны.

К специфическим особенностям грибов относятся также гетерокариоз и парасексуальный процесс.

У грибов очень широко распространено явление гетерокариоза или разноядерности, при котором в одной клетке длительное время сохраняются ядра, гетероаллельные по некоторым генам. Гетерокариоз заменяет гаплоидным грибам гетерозиготность и способствует быстрой адаптации грибов к меняющимся условиям. Наличие разноядерности обусловлено рядом специфических особенностей грибов:

1. наличие более одного ядра в клетке

Строение и основные функции клеточной стенки растений

специфическое строение клеточной перегородки, в которой имеется одно или несколько сквозных отверстий, называемых порами, через которые ядра могут мигрировать из одной клетки в другую

3. гифы внутри одной колонии и даже разных близко расположенных колоний, выросших из разных спор одного вида гриба часто срастаются, в результате чего возможен обмен ядрами разных штаммов.

Парасексуальный (псевдополовой) процесс. Если в гетерокариотичных клетках сливаются ядра, гетероаллельные по какому-либо локусу, возникает гетерозиготное диплоидное ядро. Оно может попасть в спору и дать начало диплоидному гетерозиготному клону. В процессе митозов диплоидные ядра могут возвращаться в гаплоидное состояние вследствие потери одного набора хромосом или в них может происходить обмен участками хромосом (митотический кроссинговер). Оба процесса сопровождаются рекомбинацией родительских генов и, следовательно, фенотипов. Парасексуальная (бесполовая) рекомбинация очень редкое явление, не превышающее одного ядра на миллион, но вследствие огромного числа ядер в мицелии постоянно наблюдается в популяциях грибов.

Размножение – вегетативное, бесполое, половое.

Вегетативное – фрагментация таллома, образование хламидоспор, которые после периода покоя прорастают в мицелий, почкование у дрожжей.

Бесполое размножение у разных грибов может осуществляться подвижными и неподвижными спорами. Зооспоры образуют относительно небольшая группа грибов и грибоподобных организмов – водные и некоторые наземные, у которых отчетливо прослеживаются генетические связи с водными грибами и водорослями. Структура жгутиков является важным диагностическим признаком при отнесении к определенному царству. У подавляющего большинства грибов при бесполом размножении образуются неподвижные споры, что указывает на их очень давний выход на сушу. По месту формирования и локализации различают эндогенные, образующиеся в спорангиях спорангиоспоры и экзогенные (конидии), развивающиеся на специальных гифах – конидиеносцах. Конидии образуются у большинства грибов (аскомицеты, базидиомицеты, некоторые зигомицеты) составляя конидиальное спороношение, которое отличается огромным многообразием и широко используется для диагностики грибов.

Половое размножение грибов имеет свою специфику как в морфологии полового процесс, так и в механизмах генетической и физиологической регуляции пола и передачи наследственной информации.

Соматогамия – самый распространенный и наиболее простой тип полового процесса, заключается в слиянии двух не дифференцированных на гаметы соматических клеток. Иногда он протекает даже без слияния клеток – сливаются ядра внутри клетки. Встречается у большинства базидиомицетов, сумчатых дрожжей и некоторых др. таксонов.

Гаметангиогамия – на гаплоидном мицелии обособляются гаметангии, при половом процессе сливается их содержимое. Такой половой процесс характерен для большинства сумчатых грибов. Вариантом гаметангиогамии является зигогамия у зигомицетов.

Гаметогамия в виде изо- гетеро и оогамии у грибов встречается значительно реже, чем у других эукариот. Изо- и гетерогамия встречается лишь у хитридиомицетов. Классическая оогамия с образованием сперматозоидов и яйцеклеток у грибов не выражена, а встречаются сильно измененные варианты.

По особенностям регуляции пола у грибов выделяют несколько типов полового процесса

Гинандромиксис можно рассмотреть на примере двудомных оомицетов, у которых оогонии и антеридии развиваются на разных талломах, например фитофтора или картофельный гриб. Если генетически однородный штамм выращивать в монокультуре, то он размножается только бесполым способом. Если рядом оказываются мицелии двух штаммов, то у них прослеживаются морфогенетические изменения под действием химических выделений стероидной природы – половых феромонов. Антеридиол индуцирует образование антеридиев у партнера, а оогониол –оогониев. При этом регуляция пола имеет относительный характер: будет ли штамм образовывать антеридии или же оогонии, зависит от количественного соотношения соответствующих феромонов у него и его партнера. Отсюда название полового процесса – гинандромиксис.

Димиксис или гетероталлизм. Уже давно было подмечено, что грибы могут быть гомо- или гетероталличными. У гомоталличных видов при половом процессе сливаются генетически идентичные ядра внутри мицелия. У гетероталличных видов для прохождения полового цикла необходимо на каком-то этапе (различном у разных видов грибов) слияние потомков спор (точнее, их ядер). Для половой совместимости двух штаммов необходимо генетическое различие (гетероаллельность) в определенных локусах, называемых локусами спаривания. У большинства грибов (зигомицеты, аскомицеты, часть базидиомицетов) имеется один локус спаривания с двумя аллелями. Локус спаривания состоит из нескольких генов, котрые управляют синтезом половых феромонов. Такой гетероталлизм называется однофакторным или биполярным. Потомство таких грибов после мейоза разделяется на две самонесовместимые, но взаимно совместимые группы в соотношении 1:1, т.е. вероятность родственного(инбридинга) и неродственного(аутбридинга) скрещивания составляет как и у двуполых высших эукариот 50%.

В геноме высших базидиальных грибов имеется два локуса спаривания – A и B, причем совместимы друг с другом только штаммы гетероаллельные по обоим локусам (Ax Bx совместим с Ay By, но не с Ax By и Ay Bx). Такой гетероталлизм называют двухфакторным или тетраполярным. Он снижает вероятность инбридинга до 25 %.

Диафоромиксис – у высших базидиомицетов имеется не два, а много аллелей локуса спаривания, случайно встречающихся у разных штаммов, слагающих популяцию. Такой контроль спаривания обеспечивает 100% вероятность аутбридинга, так как штаммы, имеющие разные аллели, взаимносовместимы, а аллелей очень много. В результате образуются панмиксные гибридные популляции.

Жизненные циклы грибов также разнообразны как и сами грибы. Основные циклы, их принадлежность к отделам грибов

1.Бесполый цикл характерен для огромной группы несовершенных или митогрибов, утративших половое размножение. Деление их ядер исключительно митотические. Подавляющее большинство митогрибов относится к сумчатым грибам, но в связи с утратой полового процесса, составляют формальную группу несовершенных грибов или дейтеромицетов.

2. Гаплоидный цикл. Вегетативный таллом несет гаплоидные ядра. После полового процесса (сингамии) диплоидная зигота (обычно после периода покоя) делится мейотически – зиготический мейоз. Характерен для зигомицетов и многих хитридиомицетов.

3. Гаплоидно-дикариотический цикл характеризуется тем, что после слияния содержимого гаметангиев (гаметангиогамия) или соматических клеток гаплоидного мицелия (соматогамия) ядра образуют дикарионы (пары генетически разных ядер). Они синхронно делятся, образуя дикариотический мицелий. Половой процесс завершается слиянием ядер дикариона, образующаяся зигота делится мейозом без периода покоя. Мейоспоры составляют половое спороношение сумчатых и базидиальных грибов в виде аскоспор и базидиоспор. При их прорастании образуется гаплоидный мицелий. У подавляющего большинства сумчатых грибов (кроме дрожжей и тафриновых грибов) в жизненном цикле преобладает гаплоидная фаза в виде вегетативного мицелия (анаморфа), дикариотическая фаза кратковременна и представлена аскогенными гифами, на которых образуются сумки (телеоморфа). У базидиальных грибов в жизненном цикле преобладает дикариотическая фаза, гаплоидная фаза кратковременна.

4. Гаплоидно-диплоидный цикл в виде изоморфной смены поколений у грибов встречается редко (некоторые дрожжи и водные хитридиомицеты).

5. Диплоидный цикл характерен для оомицетов и некоторых сумчатых дрожжей. Вегетативный таллом диплоидный, мейоз гаметический, наблюдается при формировании гаметангиев или гамет.

3. Экологические группы грибов.

Грибы и грибоподобные организмы входят во все наземные и водные экосистемы, как важнейшая часть гетеротрофного блока, вместе с бактериями занимая трофический уровень редуцентов. Широкое распространение грибов в биосфере определяется рядом важнейших особенностей:

1. Наличие у большинства мицелиальной структуры таллома. (позволяет быстро осваивать субстрат, иметь большую поверхность контакта со средой).

2. Большая скорость роста и размножения, позволяющие в короткие сроки заселять большие массы субстрата, образуя огромное число спор и распространять их на большие расстояния.

3. Высокая метаболическая активность, проявляющаяся в широком диапазоне значений экологических факторов.

4. Высокая скорость генетической рекомбинации, значительная биохимическая изменчивость, экологическая пластичность.

5. Способность быстро переходить к состоянию анабиоза, переживать неблагоприятные условия в течение длительного времени.

[ad010]

Главным экологическим фактором для грибов является пищевой субстрат. По отношению к этому фактору выделяют основные группы грибов, которые называются трофическими группами.

1. Сапротрофы – обитают на растительных остатках

4. Краткая характеристика отделов грибов.

Дата добавления: 2016-07-11; просмотров: 3437;

Похожие статьи:

У большинства грибов клетка по своему строению и выполняемым ею функциям в целом аналогична клетке растений. Она состоит из твердой оболочки и внутреннего содержимого, представляющего собой цитоплазматическую систему, окруженную цитоплазматической мембраной и содержащую митохондрии, рибосомы, ядро (или ядра), вакуоли и различные включения.


Однако грибная клетка имеет ряд специфических особенностей, отличающих ее от растительной клетки и послуживших в числе других аргументов основанием для выделения грибов в самостоятельное царство живой природы. Клеточная оболочка у грибов выполняет роль защитного барьера и, кроме того, непосредственно участвует в процессах питания гриба и обмена веществ между клеткой и внешней средой. Оболочка клетки может быть однослойной или многослойной, разнообразной по химическому составу. Строение, состав и свойства клеточной оболочки зависят от вида гриба и функций клетки. Они могут изменяться с возрастом, при переходе из одной фазы развития в другую, под влиянием условий питания и других факторов.

Основу оболочки составляют полисахариды (например, целлюлоза), простые сахара, белки, липиды и фосфаты. Кроме того, в ее состав входят лигниноподобные вещества, производные нуклеиновых кислот, аминокислоты, различные соли, смолы, а также хитин, свойственный покровными тканям насекомых, хитозан, Р-глюкан. Эти и другие компоненты содержатся в оболочках клеток грибов в самых разнообразных сочетаниях, образуя сложные комплексы, характерные для определенных систематических групп грибов.

Оболочки молодых клеток обычно тонкие, бесцветные, однородные по структуре. По мере старения оболочка может утолщаться, ослизняться, становиться более темной благодаря отложению пигментов. Наружные слои оболочки клеток (особенно спор) многих грибов кутинизированы, пропитаны воском и жиром, что делает их не смачиваемыми.

Клеточная стенка

У трутовых грибов, особенно часто в плодовых телах, наблюдаются лигнификация и опробковение оболочек гиф.

По строению ядерного аппарата грибы относятся к эукариотам. Ядро в клетках грибов четко обособлено, снабжено оболочкой и содержит ядрышко. У грибов разных систематических групп число ядер в клетке неодинаково. Хорошо развитый несептированный мицелий низших грибов содержит много ядер. У большинства сумчатых грибов (за исключением мучнисто росяных) и базидиомицетов клетки одно- или двуядерные, в зависимости от фазы развития. Ядра обычно мелкие, в среднем 2—3 мкм (в сумках и базидиях — более крупные), круглой, овальной или веретеновидной формы, однако форма их не постоянна.

Своеобразная особенность грибов — отсутствие в цитоплазме их клеток растительного крахмала. В то же время важнейшая роль, принадлежит гликогену, который обычно содержится в тканях животных. Гликоген является основным запасным веществом грибной клетки и равномерно распределяется по всей цитоплазме в виде мелких гранул. Клетки грибов содержат также большое количество метахроматина (волютина). Он относится к полифосфатам и играет важную роль в процессах обмена. Из других включений в клетках многих грибов содержатся жировые вещества; особенно богаты ими споры, плодовые тела, склероции, старые части мицелия. Жиры находятся в цитоплазме в мелкораспыленном состоянии или образуют более крупные капли (липосомы).

В состав клеток мицелия, репродуктивных органов, покоящихся структур грибов могут входить и многие другие вещества: пигменты, органические кислоты и их соли, витамины, терпены (ароматические эфирные масла), токсины, смолы и др.

Некоторые из них играют роль запасных питательных веществ клетки, участвуют в физиологических процессах, выполняют защитную функцию, другие являются вредными для клетки продуктами ее метаболизма.

 Индийский грибРаспространения спор грибов 

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

ya krevedko