Партеногенез у животных

Партеногенез у животных

Партеногенез

Партеногенез — одна из модификаций полового размножения, при которой женская гамета развивается в новую особь без оплодотворения мужской гаметой. Партеногенетическое размножение встречается как в царстве животных, так и в царстве растений, и преимущество его состоит в том, что в некоторых случаях оно повышает скорость размножения.

Существует два вида партеногенеза — гаплоидный и диплоидный, в зависимости от числа хромосом в женской гамете. У многих насекомых, в том числе у муравьев, пчел и ос, в результате гаплоидного партеногенеза в пределах данного сообщества возникают различные касты организмов. У этих видов происходит мейоз и образуются гаплоидные гаметы. Некоторые яйцеклетки оплодотворяются, и из них развиваются диплоидные самки, тогда как из неоплодотворенных яйцеклеток развиваются фертильные гаплоидные самцы. Например, у медоносной пчелы матка откладывает оплодотворенные яйца (2n = 32), которые, развиваясь, дают самок (маток или рабочих особей), и неоплодотворенные яйца (n = 16), которые дают самцов (трутней), производящих спермии путем митоза, а не мейоза. Развитие особей этих трех типов у медоносной пчелы схематически представлено на рис. Такой механизм размножения у общественных насекомых имеет адаптивное значение, так как позволяет регулировать численность потомков каждого типа.

У тлей происходит диплоидный партеногенез, при котором ооциты самки претерпевают особую форму мейоза без расхождения хромосом — все хромосомы переходят в яйцеклетку, а полярные тельца не получают ни одной хромосомы. Яйцеклетки развиваются в материнском организме, так что молодые самки рождаются вполне сформировавшимися, а не вылупляются из яиц.

10 Животных способных размножаться без партнера.

Такой процесс называется живорождением. Он может продолжаться в течение нескольких поколений, особенно летом, до тех пор пока в одной из клеток не произойдет почти полное нерасхождение, в результате чего получается клетка, содержащая все пары аутосом и одну Х-хромосому . Из этой клетки партеногенетически развивается самец. Эти осенние самцы и партеногенетические самки производят в результате мейоза гаплоидные гаметы, участвующие в половом размножении. Оплодотворенные самки откладывают диплоидные яйца, которые перезимо-вывают, а весной из них вылупляются самки, размножающиеся партеногенетически и рождающие живых потомков. Несколько партеногенетических поколений сменяются поколением, возникающим в результате нормального полового размножения, что вносит в популяцию генетическое разнообразие в результате рекомбинации. Главное преимущество, которое дает тлям партеногенез, — это быстрый рост численности популяции, так как при этом все ее половозрелые члены способны к откладке яиц. Это особенно важно в периоды, когда условия среды благоприятны для существования большой популяции, т.е. в летние месяцы.

Партеногенез широко распространен у растений, где он принимает различные формы. Одна из них — апомиксис — представляет собой партеногенез, имитирующий половое размножение. Апомиксис наблюдается у некоторых цветковых растений, у которых диплоидная клетка семязачатка-либо клетка нуцеллуса, либо мегаспора — развивается в функциональный зародыш без участия мужской гаметы. Из остального семязачатка образуется семя, а из завязи развивается плод. В других случаях требуется присутствие пыльцевого зерна, которое стимулирует партеногенез, хотя и не прорастает; пыльцевое зерно индуцирует гормональные изменения, необходимые для развития зародыша, и на практике такие случаи трудно отличить от настоящего полового размножения.

Гермафродизм / Половое размножение /Содержание

Партеногенез (от греч. parthénos — девственница и …генез), девственное размножение, одна из форм полового размножения организмов, при которой женские половые клетки (яйцеклетки) развиваются без оплодотворения.П. — половое, но однополое размножение — возник в процессе эволюции организмов у раздельнополых форм. В тех случаях, когда партеногенетические виды представлены (всегда или периодически) только самками, одно из главных биологических преимуществ П. заключается в ускорении темпа размножения вида, так как все особи подобных видов способны оставить потомство. В тех случаях, когда из оплодотворённых яйцеклеток развиваются самки, а из неоплодотворённых — самцы, П. способствует регулированию численных соотношений полов (например, у пчёл). Часто партеногенетические виды и расы являются полиплоидными и возникают в результате отдалённой гибридизации, обнаруживая в связи с этим гетерозис и высокую жизнеспособность. П. следует отличать от бесполого размножения, которое осуществляется всегда при помощи соматических органов и клеток (размножение делением, почкованием и т.п.). Различают П. естественный — нормальный способ размножения некоторых организмов в природе и искусственный, вызываемый экспериментально действием разных раздражителей на неоплодотворённую яйцеклетку, в норме нуждающуюся в оплодотворении.

Партеногенез у животных. Исходная форма П. — зачаточный, или рудиментарный, П., свойственный многим видам животных в тех случаях, когда их яйца остаются неоплодотворёнными. Как правило, зачаточный П. ограничивается начальными стадиями зародышевого развития; однако иногда развитие достигает конечных стадий (случайный, или акцидентальный, П.). Полный естественный П. — возникновение вполне развитого организма из неоплодотворённой яйцеклетки — встречается во всех типах беспозвоночных. Обычен он у членистоногих (особенно у насекомых). П. открыт и у позвоночных — рыб, земноводных, особенно часто встречается у пресмыкающихся (этим способом размножаются не менее 20 рас и видов ящериц, гекконов и др.). У птиц большая склонность к П., усиленная искусственным отбором до способности давать половозрелых особей (всегда самцов), обнаружена у некоторых пород индеек. У млекопитающих известны только случаи зачаточного П.; единичные случаи полного развития наблюдались у кролика при искусственном П.

  Различают облигатный П., при котором яйца способны только к партеногенетическому развитию, и факультативный П., при котором яйца могут развиваться и посредством П., и в результате оплодотворения . Часто размножение посредством П. чередуется с обоеполым — так называемый циклический П. Партеногенетические и половые поколения при циклическом П. внешне различны. Так, последовательные генерации у тлей рода Chermes резко различаются по морфологии (крылатые и бескрылые формы) и экологии (приуроченность к разным кормовым растениям); у некоторых орехотворок особи партеногенетических и обоеполых поколений столь различны, что принимались за разные виды и даже роды. Обычно (у многих тлей, дафний, коловраток и др.) летние партеногенетические поколения состоят из одних самок, а осенью появляются поколения из самцов и самок, которые оставляют на зиму оплодотворённые яйца. Многие виды животных, не имеющие самцов, способны к длительному размножению путём П. — так называемый константный П. У некоторых видов наряду с партеногенетической женской расой существует обоеполая раса (исходный вид), занимающая иногда др. ареал — так называемый географический П. (бабочки чехлоноски, многие жуки, многоножки, моллюски, коловратки, дафнии, из позвоночных — ящерицы и др.).

  По способности давать посредством П. самцов или самок различают: арренотокию, при которой из неоплодотворённых яиц развиваются только самцы (пчёлы и др. перепончатокрылые, червецы, клещи, из позвоночных — партеногенетические линии индеек); телитокию, при которой развиваются только самки (самый распространённый случай); дейтеротокию, при которой развиваются особи обоего пола (например, при случайном П. у бабочек; в обоеполом поколении при циклическом П. у дафний, коловраток, тлей).

  Очень большое значение имеет цитогенетический механизм созревания неоплодотворённой яйцеклетки. Именно оттого, проходит ли яйцеклетка мейоз и уменьшение числа хромосом вдвое — редукцию (мейотический П.) или не проходит (амейотический П.), сохраняется ли при этом свойственное виду число хромосом вследствие выпадения мейоза (зиготический П.) или это число восстанавливается после редукции слиянием ядра яйцеклетки с ядром направительного тельца или как-либо иначе (аутомиктический П.), зависят в конечном счёте наследственная структура (генотип) партеногенетического зародыша и все его важнейшие наследственные особенности — пол, сохранение или утрата гетерозиса, приобретение гомозиготности и пр.

  П. делят также на генеративный, или гаплоидный, и соматический (он может быть диплоидным и полиплоидным). При генеративном П. в делящихся клетках тела наблюдается гаплоидное число хромосом (n); этот случай относительно редок и сочетается с арренотокией (гаплоидные самцы — трутни пчёл). При соматическом П. в делящихся клетках тела наблюдается исходное диплоидное (2n) или полиплоидное (Зn, 4n, 5n, редко даже 6n и 8n) число хромосом. Часто в пределах одного вида имеется несколько рас, характеризующихся кратными числами хромосом,— так называемые полиплоидные ряды. По очень высокой частоте полиплоидии партеногенетические виды животных представляют резкий контраст с обоеполыми, у которых полиплоидия, наоборот, большая редкость. Полиплоидные раздельнополые виды животных, по-видимому, произошли путём П. и отдалённой гибридизации.

  Своеобразна форма П. — педогенезпартеногенетическое размножение в личиночном состоянии.

  Искусственный П. у животных был впервые получен русским зоологом А. А. Тихомировым. Он показал (1886), что неоплодотворённые яйца тутового шелкопряда можно побудить к развитию растворами сильных кислот, трением и др. физико-химическими раздражителями. В дальнейшем искусственный П. был получен Ж. Лёбом и др. учёными у многих животных, главным образом у морских беспозвоночных (морские ежи и звёзды, черви, моллюски), а также у некоторых земноводных (лягушка) и даже млекопитающих (кролик). В конце 19 — начале 20 вв. опыты по искусственному П. привлекали особое внимание биологов, давая надежду с помощью этой физико-химической модели активации яйца проникнуть в сущность процессов оплодотворения. Искусственный П. вызывают действием на яйца гипертонических или гипотонических растворов (так называемый осмотический П.), уколом яйца иглой, смоченной гемолимфой (так называемый травматический П. земноводных), резким охлаждением и особенно нагревом (так называемый температурный П.), а также действием кислот, щелочей и т.п. С помощью искусственного П. обычно удаётся получать лишь начальные стадии развития организма; полный П. достигается редко, хотя известны случаи полного П. даже у позвоночных животных (лягушка, кролик). Способ массового получения полного П., разработанный (1936) для тутового шелкопряда Б. Л. Астауровым, основан на точно дозированном кратковременном прогреве (до 46 °С в течение 18 мин)извлечённых из самки неоплодотворённых яиц. Этот способ даёт возможность получать у тутового шелкопряда особи только женского пола, наследственно идентичные с исходной самкой и между собой. Получаемые при этом ди-, три- и тетраплоидные клоны можно размножать посредством П. неограниченно долго. При этом они сохраняют исходную гетерозиготность и «гибридную силу». Отбором получены клоны, размножающиеся посредством П. так же легко, как обоеполые породы посредством оплодотворения (более 90% вылупления активированных яиц и до 98% жизнеспособности). П. представляет разносторонний интерес для практики шелководства.

Партеногенез у растений. П., распространённый среди семенных и споровых растений, относится обычно к константному типу; факультативный П. обнаружен в единичных случаях (у некоторых видов ястребинки и у василистника Thalictrum purpurascens). Как правило, пол партеногенетически размножающихся растений — женский: у двудомных растений П. связан с отсутствием или крайней редкостью мужских растений, у однодомных — с дегенерацией мужских цветков, отсутствием или абортивностью пыльцы. Как и при П. животных, различают: генеративный, или гаплоидный, П. и соматический, который может быть диплоидным или полиплоидным. Генеративный П. встречается у водорослей (кутлерия, спирогира, эктокарпус) и грибов (сапролегния, мукор, эндомицес). У цветковых растений он наблюдается только в экспериментальных условиях (табак, скерда, хлопчатник, хлебные злаки и многие др.). Соматический П. встречается у водорослей (хара, кокконеис), у папоротников (марселия Друммонда) и у высших цветковых растений (хондрилла, манжетка, ястребинка, кошачья лапка, одуванчик и др.). Полиплоидный П. у растений встречается очень часто; однако полиплоидия не является здесь особенностью партеногенетических видов, так как широко распространена и у обоеполых растений. К П. растений близки др. способы размножения — апогамия, при которой зародыш развивается не из яйцеклетки, а из др. клеток гаметофита, и апомиксис.Искусственный П. у растений получен у некоторых водорослей и грибов действием гипертонических растворов, а также при кратковременном нагревании женских половых клеток. Австрийский учёный Э. Чермак получил (1935—48) искусственный П. у цветковых растений (хлебные злаки, бобовые и многие др.), вызывая его раздражением рыльца убитой или чужеродной пыльцой или порошкообразными веществами (тальк, мука, мел и пр.). Советский учёный Е. М. Вермель получил (1972) диплоидный П. у смородины, томатов и огурцов действием диметилсульфоксида.

  К П.

Что такое партеногенез? Какие животные могут похвастаться способностью к партеногенезу?

относят также своеобразные способы развития животных и растений — гиногенез и андрогенез, при которых яйцеклетка активируется к развитию проникающим спермием своего или близкого вида, но ядра яйцеклетки и спермия не сливаются, оплодотворение оказывается ложным, и зародыш развивается только с женским (гиногенез) или только с мужским (андрогенез) ядром.

Лит.: Астауров Б. Л., Искусственный партеногенез у тутового шелкопряда (Экспериментальное исследование), М. — Л., 1940; его же, Цитогенетика развития тутового шелкопряда и ее экспериментальный контроль, М., 1968; Тайлер А., Искусственный партеногенез, пер. с англ., в кн.: Некоторые проблемы современной эмбриофизиологии, М., 1951; Астауров Б. Л., Демин Ю. С., Партеногенез у птиц, «Онтогенез», 1972, т. 3, № 2; Rostand J., La parthénogenèse animale. P., 1950.

  Б. Л. Астауров.

Ппартеногенез у животных и насекомых

Мы привыкли думать, что у живых существ, имеющих половые клетки, возникновение зародышей всегда сопровождается слиянием яйца и сперматозоида. Но это не обязательно. У некоторых животных яйца способны развиваться сами по себе, без какоголибо участия мужских половых клеток. Это явление открыто Левенгуком в начале XVIII века и получило название девственного размножения, или партеногенеза.

При любом способе размножения всегда какоето число яйцеклеток остается неоплодотворенным. Все они очень скоро гибнут. Впрочем, из этого правила есть многочисленные исключения. У иглокожих, некоторых червей и членистоногих оставшиеся неоплодотворенными яйца могут начать делиться, как и оплодотворенные, но развитие не идет до конца. На определенной стадии оно приостанавливается, и зародыш гибнет. У этих организмов новые полноценные существа из неоплодотворенного яйца возникают чрезвычайно редко.

Известны, однако, животные (некоторые виды кузнечиков и другие насекомые), у которых неоплодотворенные яйца развиваются нормально, а личинки, вышедшие из них, вырастают до взрослых особей, так что обычный способ размножения необязателен.

У только что названных животных партеногенез явление случайное, не имеющее серьезного значения для вида. В отличие от них есть организмы, которые не могли бы существовать без этого и размножаются только партеногенетически или чередуют партеногенетическое размножение с нормальным. Последний способ размножения получил название сезонного партеногенеза. Он присущ тлям и многим другим насекомым.

У виноградного вредителя филлоксеры из отложенных с осени яичек весной развиваются только самки, носящие название основательниц. Из 50 яиц, отложенных каждой из них, партеногенетически развиваются такие же самки, которые, в свою очередь, откладывают неоплодотворенные яйца. В течение лета рождается несколько поколений; самцы попрежнему отсутствуют. Только с наступлением осени из неоплодотворенных яиц выведется два вида крылатых самок, не очень похожих друг на друга. Одни из них отложат более крупные яйца, из которых вылупятся самки. Из более мелких яиц, откладываемых другими, выведутся самцы. И эти яйца, конечно, развиваются партеногенетически. Только с появлением самцов наступает половое размножение.

Какого пола бывают животные, выросшие из партеногенетически развившихся яиц? На примере филлоксеры мы видели, что и самцы и самки. Еще более многочисленны случаи, когда партеногенетическое развитие дает одних самцов. Состарившаяся пчелиная матка, израсходовав весь запас полученной ею при спаривании спермы, откладывает яйца, из которых развиваются только трутни. Не трудно понять целесообразность этого явления для сохранения вида. Появление трутней именно в этот период должно обеспечить оплодотворение молодой пчелиной матки.

Многие животные могут совсем обходиться без полового размножения. Было проведено специальное наблюдение за одним видом мелких рачков, продолжавшееся 28 лет. За это время получили 124 поколения, причем ни разу ни одного самца не нашли; все 124 поколения рачков были получены партеногенетически. Такой же постоянный партеногенез наблюдается у некоторых видов муравьев, пилильщиков, орехотворок и других насекомых. Все поколения этих животных состоят только из самок. Самцы у них отсутствуют, а если иногда и появляются, то бывают дефектными и в размножении никакого участия не принимают.

Не следует думать, что партеногенез присущ лишь очень низко организованным животным. У нас в Армении живут шесть подвидов скальных ящериц, для трех из них до сих пор не удалось обнаружить самцов. Самки этих подвидов откладывают неоплодотворенные яйца, которые способны развиваться партеногенетически.

Особенно интересной формой партеногенеза является педогенез. О «трогательнонежных» личинках галловых мух, съедающих свою мать, уже говорилось. Другой любопытный пример педогенеза относится к сосальщикам, паразитирующим на рыбах. У них в теле матери из единственного находящегося там яйца развивается зародыш, а в нем, в свою очередь, партеногенетически развивается другой, в теле которого возникает зародыш третьего поколения и так далее. Одновременно развивается пять поколений, вложенных друг в друга, как куклыматрешки. Лишь представители шестого поколения достигают половой зрелости.

Возникает вопрос: только ли женская половая клетка способна к партеногенетическому развитию? Оказывается, что и сперматозоидам также в какойто мере присуще это свойство. Партеногенетическому развитию сперматозоида препятствует отсутствие в нем необходимого запаса питательных веществ. Поэтому гораздо лучшие результаты получаются при оплодотворении нормальными сперматозоидами безъядерных обрывков яйца. Здесь сперматозоид находит большой запас питательных веществ, что и обеспечивает его развитие. У морских ежей были получены мелкие зародыши при оплодотворении безъядерных обрывков, равных по величине 1/37 части целого яйца.

Поскольку партеногенез такое обычное явление, пробовали вызвать его искусственно. Для этого пользовались теплом и холодом, ультрафиолетовым и радиоактивным излучением, воздействовали кислотами и щелочами, гипо– и гипертоническими растворами, растворителями жиров, алкалоидами и другими веществами, прибегали к высушиванию, трению, уколам и т.п. Применяя перечисленные способы воздействия, удавалось вызвать развитие яйца. Правда, оно не всегда шло до конца, но это объясняется отчасти большой сложностью создания в лаборатории условий, необходимых для нормального развития яиц и зародышей.

Иногда искусственно стимулированные яйца развиваются неправильно. Это обусловлено разными причинами. Одна из них – нарушение симметрии будущего зародыша. Для большинства организмов место вхождения сперматозоида в яйцо определяет направление плоскости двусторонней симметрии зародыша. Ни одно из применявшихся до сих пор воздействий не смогло заменить в этом отношении сперматозоид и произвести раздражение узко ограниченного участка яйца. Даже укол иглой не имитирует полностью воздействия сперматозоида, может быть, только потому, что занимает гораздо меньше времени, чем прохождение сперматозоида сквозь оболочку яйца.

Какие животные способны к партеногенезу?

Все же у многих животных, в том числе у миног, рыб, лягушек и даже млекопитающих, получены взрослые вполне нормальные организмы.

Большое количество разнообразных способов воздействия, которые вызывают активизацию яиц, позволяют объяснить случаи спонтанного партеногенеза. Различные вредные воздействия, воспалительные и особенно, дегенеративные процессы являются их причиной. Безусловно, количество известных науке случаев спонтанного партеногенетического развития у млекопитающих незначительно по сравнению с тем, что происходит на самом деле, так как развивающиеся яйца гибнут на ранних стадиях дробления.

Женские половые клетки человека также способны к партеногенетическому развитию. Правда, чтобы такое развитие закончилось рождением ребенка, необходимо удачное, но практически невероятное стечение счастливых обстоятельств. Партеногенетическое развитие женских половых клеток человека можно вызвать искусственно. В лабораторных условиях наблюдали начальные стадии дробления неоплодотворенного человеческого яйца, помещенного в кровяную сыворотку. Гибель таких яиц наступала как вследствие их неправильного развития, так и потому, что ученые не могли создать яйцу достаточно благоприятные условия, необходимые для нормального развития. Успехи, достигнутые в этой области итальянским ученым Петруччи, дают основание надеяться, что партеногенетическое развитие человеческого зародыша будет прослежено до гораздо более поздних стадий.



О непорочном зачатии и партеногенезе

Валентин Валевский

               В истории человечества, кажется, уже не осталось так называемых «белых пятен», но тема непорочного зачатия Святой Девы Марии до сих пор тревожит умы многих исследователей и все чаще приводит их к мысли научного объяснения этого феномена. Быть может, кто-то сей феномен относит к области чуда, а кто-то, вероятно, пытается сие объяснить явлением партеногенеза, что вполне допустимо, поскольку науке известно это явление как у растений, так и животных, когда участие мужских особей в размножении не является необходимым. Из материала издания «Owlcation» («Parthenogenesis: Virgin Births in Nature», Aug, 19, 2012) мы можем узнать о партеногенезе примерно следующее: «Слово «партеногенез» происходит из греческого языка и буквально означает «девственное рождение». Вне процесса оплодотворения новый организм развивается из яйцеклетки, наследуя генетическую информацию от своей матери, исключая при этом мужскую особь. Это явление наблюдается в природе у некоторых животных…» От себя добавлю только, что речь идет об одной из форм полового размножения без оплодотворения мужской половой клеткой, мужской гаметой сиречь сперматозоидом. Несмотря на кажущуюся невероятность подобного феномена, это однако уже стало реальностью, поскольку в Японии в лабораторных условиях удалось получить потомство у мышей средствами искусственного воспроизведения процесса партеногенеза в лабораторных условиях. Из статьи журнала «Science» (sciencemag.org, Gretchen Vogel, «A Mouse With Two Mothers», Apr 21, 2004) мы можем узнать о некоей мыши Кагуи, «первым млекопитающим, рожденным от двух генетических матерей. Ученые в Японии создали вполне жизнеспособную мышь, которую они назвали Кагуей, объединив генетический материал из двух яйцеклеток. Для некоторых животных это не является чем-то особенным, говоря о развитии из одного неоплодотворенного яйца. Насекомые, рептилии и другие виды способны воспроизводить процесс, называемый партеногенезом. Млекопитающие, однако, требуют участия как отца, так и матери.»  Этот опыт японских ученых неопровержимо доказал, что партеногенез у млекопитающих возможен, и геномный импритинг, который требует, чтобы в ДНК плода присутствовали и мужские, и женские гены, не является необходным моментом, просто процесс партеногенеза требует совершенно других условий. Чтобы понять о чем идет речь, поясню согласно материалам издания «Genome News Network» («Mice with Two Mothers», Apr 23, 2004), что «в новом исследовании под руководством Томохиро Коно из Токийского университета его коллегам удалось изменить способ маркировки двух из всей массы генов таким образом, чтобы два набора женских генов, полученных из яиц, могли объединяться в живые эмбрионы. В этом новом исследовании, упомянутом в издании «Nature», сообщается, что исследователи сосредоточились на двух генах, которые, как известно, важны для импринтинга.   Результаты показывают, что правильный импринтинг генов H19 и Igf2 очень важен для нормального развития эмбриона. Однако эффективность метода получения нового потомства была очень низкой. Из более чем 500 эмбрионов до момента рождения выжили только два.»

               Возможно, кто-нибудь скажет, что это, наверное, какая-то ошибка и редакторы научных изданий, вероятно, просто что-то не поняли? Но нет, ибо в сообщении, опубликованном в том же журнале «Nature» (по русскоязычной версии news.bbc.co.uk, 21. 04.2004) рассказывается, что испытуемая «яйцеклетка имела два набора хромосом, принадлежащих матери, а не один материнский и один отцовский, как положено в природе. Это явление, называемое партеногенезом, никогда не наблюдается среди млекопитающих. Группе японских ученых удалось выключить ген, который отвечает за импринтинг – это тот барьер, который препятствует партеногенезу у млекопитающих. Исследователи вводили генетический материал незрелой яйцеклетки в зрелую яйцеклетку, уже имеющую свой набор хромосом. Затем они "активизировали" зрелую яйцеклетку, вызывая процесс ее развития в эмбрион.» Из всего этого мы можем извлечь самое главное: японским ученым удалось выключить ген, отвечающий за импринтинг. А вот эта цитата из интернет-издания NEWSru.com (22.04.2004) будет полезна прежде всего для тех, кто хочет что-то узнать о самом процессе получения потомства подобным методом: «Это млекопитающее – мышь, которой дали имя Кагуя. Она появилась на свет в Японии в результате смешения генетического материала двух яйцеклеток.

Есть ли представители фауны, у которых отсутствует второй пол (существуют только самки)?

Такое зарождение млекопитающего, источником генетического материала для которого служит женская яйцеклетка без вмешательства мужских генов, получило в науке название партеногенеза, или "непорочного рождения", сообщает New Scientist.»

               Сразу обратим внимание, что к данному случаю применительно было употреблено выражение или термин «непорочного рождения», что несомненно напомнит нам о непорочном зачатии Девы Марии и придаст веры, что такое вполне могло быть и у представителей нашего вида.

Что до случая с лабораторной мышью, то здесь мы уже имеем случай с вмешательством человека. Чтобы особо не утомлять читателей, расскажу вкратце, что речь идет о подавлении деятельности гена Н19 в незрелой яйцеклетке мыши, в результате которого происходит активизация другого гена Igf2, отвечающего за воспроизводство белка в процессе развития эмбриона. Оба этих гена подвергаются процессу так называемого импринтинга, препятствующего развитию эмбриона без участия мужских и женских генов одновременно. Похоже, что этот механизм заложен самой природой, но по всей видимости в организмах млекопитающих, в том числе и высших, включая сюда человека, может спать другой механизм, который может включаться при определенных условиях вполне естественными путями, а может также включаться совершенно искусственно в лабораторных условиях. Говоря о последнем, посредством манипуляций с генами ученым удалось получить в лабораторных условиях совершенно здоровую популяцию мышей, способных к размножению, чей уровень продолжительности жизни значительно превышал уровень жизни нормальных особей, полученных естественным способом. Может быть кто-нибудь из несведущих скажет, мол, ба, да это же клон! И тут снова будут неправы, ибо эта особь не является клоном! Согласно опубликованным научным данным мы узнаем, что Кагуя не является клонированным животным, ибо для её создания использовались клетки двух родительских особей. Само исследование направлено на изучение процесса партеногенеза, что явствует из заявления японского микробиолога Томохиро Коно: «Целью нашего исследования было выяснение того, почему для развития млекопитающих требуются и сперма и яйцеклетка», — сказал Коно. Впоследствии Кагуя традиционным способом — с участием самца — произвела на свет потомство.»

               Предвижу также другие скептические возгласы, дескать, такие мыши якобы не проживут долго. Однако и тут скептики будут неправы, поскольку мыши, полученные путем партеногенеза живут гораздо дольше (!!!). Этот опыт еще важен тем, что он может в недалеком будущем стать отправной точкой для продления жизни прекрасной половины человечества, т. к. женщины, рожденные в результате процесса партеногенеза смогут жить намного дольше обычных женщин, зачатых естественным путем размножения. Более того, как оказалось, что определенные мужские гены у млекопитающих и в, частности, у человека значительно сокращают человеческую жизнь. Именно они ускоряют процессы старения у особей, зачатых естественным половым путем размножения, что склоняет мое мнение в пользу партеногенеза. Как отметили учёные в своей публикации в журнале Human Reproduction (февраль 2010), «все полученные самки мышей по сравнению с нормальными, обладавшими как «материнским», так и «отцовским» генным материалом, имели значительно меньшие размеры и вес. Предположительно, определённые мужские гены увеличивают потенциал роста организма отпрыска, сокращая при этом его жизнь.»

                 На самом деле это очень интересная, довольно интригующая проблема, которая несомненно задевает мужскую часть нашей планеты (наш сильный, так сказать, пол), умалчивать о которой нельзя, ибо однажды мы можем навлечь на себя гром с ясного неба, поскольку развитие науки и техники, медицины и человеческого прогресса идет такими стремительными шагами, что партеногенез у женщин, по-видимому, станет в недалеком будущем явлением совершенно обычным, таким же, например, как способ естественного размножения. Нелишним будет здесь также напомнить о технологии клонирования, в результате которой появилась небезызвестная овечка Долли. Однако, для тех, кто не очень ориентируется в вопросе, скажу, что партеногенез и клонирование суть разные вещи. Партеногенез — это одна из форм полового размножения без оплодотворения мужской яйцеклеткой, а клонирование — это «появление естественным путем или получение нескольких генетически идентичных организмов путем бесполого размножения.» Существуют также данные по неподтвержденным пока источникам о клонировании человека, но и этого вполне достаточно, чтобы понять, что всё это ведет к очень нехорошим последствиям. И хорошо, если в ходе НТР (научно-технической революции) отдельных представителей нашего вида не запишут в Красную Книгу, из-за чего последние могут оказаться в каких-нибудь кунсткамерах или запасниках генетического материала, а то может и вовсе статься, что с течением времени появится какой-нибудь новый вирус вроде лихорадки Эбола, который в отличие от последней начнет косить избирательно исключительно сильную половину человечества, в результате чего мы можем оказаться вымершим видом, как мамонты, например, или динозавры. И все же, употребив здесь столько сентенций и коснувшись нравоучительной стороны проблемы, мы уходим от самого главного, а именно, — чувства реальности. Ведь кто-нибудь совершенно обоснованно может увидеть здесь какую-нибудь подоплеку, обвинить меня в предвзятости и справедливо упрекнуть, мол, всё это только досужие домыслы, не отражающие существо вопроса. Ну что же, упрек, конечно, резонен, а потому давайте обратимся к фактам. Итак, известны ли в истории случаи партеногенеза у человека, если не упоминать случай (или догмат святой католической церкви) непорочного зачатия Девы Марии? Ответ утвердительный: в истории известны реальные случаи непорочного зачатия у людей, произошедших в Африке и странах Европы. К примеру, в статье популярного издания «Peregrine reads» («Science behind women getting pregnant without sexual intercourse», 14 Dec 2015) упоминается, что «в 1956 году медицинский журнал «Lancet» опубликовал отчет о 19 предполагаемых случаях девственного рождения среди женщин в Англии, которые изучались членами Британской медицинской ассоциации. Шестимесячное исследование убедило исследователей в том, что партеногенез у человека физиологически возможен и на самом деле произошел у некоторых изучаемых женщин.» Согласитесь, это о многом заставляет задуматься.

                Итак, если партеногенез все-таки возможен и в истории человечества известны достоверные случаи партеногенеза, то непорочное зачатие Девы Марии и появление Иисуса уже не кажется чем-то фантастическим и имеет реальное научное объяснение. Как известно, наука неопровержимо доказала, что за внешние признаки пола отвечает не сама половая хромосома X или Y, а всего один половой ген, находящейся в оной. В истории человечества также известны аномалии, когда внешне вполне нормальные и половоспособные мужчины являлись носителями женских половых хромосом XX. Исследования показали, что в их геноме во время зачатия произошел сбой, в результате которого в одну из половых хромосом попал ген, отвечающий за мужские половые признаки. Однако носители подобного генного набора являются бесплодными и не могут иметь детей. Если это так, то в реальности девственного самозачатия Девы Марии не приходится сомневаться и становится понятно, почему при делении яйцеклетки образовалась мужская особь. Полагаю, что Иисус Христос все-таки был и был именно таким, как его описывают Святые Евангелия.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Дополнительные материалы для ознакомления по проблеме партеногенеза:

1. «Birth of parthenogenetic mice that can develop to adulthood»
Nature 428, 860—864 (22 April 2004) https://www.nature.com/articles/nature02402
2. «High-frequency generation of viable mice from engineered bi-maternal embryos»
Nature Biotechnology 25,1045-1050(2007)
http://www.nature.com/nbt/journal/v25/n9/abs/nbt1331.html 
3. «Parthenogenesis and Human Assisted Reproduction», Adriana Bos-Mikich,
Fabiana F. Bressan, Rafael R. Ruggeri, Yeda Watanabe, and Fl;vio V. Meirelles;
«NCBI — NIH» (9 Nov 2015) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655294/

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Для дополнительного чтения:

«Существовал ли Иисус? Истина или заблуждение?»
http://www.stihi.ru/2010/11/26/1734

«Радиоактивный распад в явлении Воскресения»
http://www.stihi.ru/2012/04/23/1554

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

в качестве иллюстрации к материалу произведения
представлена картина художника Евгении Папшевой
«Зарождение жизни», ссылка на доступный источник:
http://shaping.ru/anomalia/img.asp?id=1407 

© Copyright: Валентин Валевский, 2012
Свидетельство о публикации №112112805874

Список читателей / Версия для печати / Разместить анонс / Заявить о нарушении

Другие произведения автора Валентин Валевский

Рецензии

Написать рецензию

Статья действительно аргументированная и важная, Валентин.
Мне кажется, что тех материалов, которые ты так усердно собирал,
хватило бы на несколько диссертаций. По поводу религиозной стороны…
Хм-м… Я останусь всё-таки при своем, но выскажу следующую мысль.
Есть интересная деталь. Но разве в случае самозачатия женщины
или по-научному партеногенеза не должна получиться женская особь?
Мне всё-таки хотелось бы узнать твой подробный ответ.

Ирина Леви   31.10.2016 18:05     Заявить о нарушении

+ добавить замечания

Спасибо за обширный комментарий, но возражу. За внешние половые признаки (мужские или женские, неважно) отвечают не сами половые хромосомы, а только гены. При определенных генных аномалиях могут произойти определенного рода отклонения и такие случаи широко известны. К примеру, были случаи, когда рождались мужские бесплодные особи с женским набором половых хромосом. В данном случае мог выступить ген, отвечающий за внешние половые признаки. Замечу, что "у птиц, бабочек и некоторых видов рыб гомогаметен мужской пол, у мужской особи кариотип обозначается XX, а у женской — XY", т. е. у этих живых организмов всё наоборот. Данный случай как раз и доказывает, что за формирование половых признаков отвечают именно гены, а не хромосомы. Данные гены находятся в ядре и митохондриях, в частности, в митохондриях, связанных с женским полом. Если допустить мысль, что ген, отвечающий за женские половые признаки, будет отсутствовать, то в данном случае несомненно сформируется мужская особь, несмотря на наличие женских половых хромосом.

Безусловно, высказанная мною концепция никак не затрагивает религиозных доктрин и разумеется, к ним не относится. Я только пытаюсь научно переосмыслить некоторые взгляды на так называемые чудеса. Что касаемо существования Бога, то это вовсе не антинаучно, ведь никто пока не оспорил взгляда на существование Бога как Высшего Разума. Я за научный подход, но это не значит, что надо перестать верить в чудо.

Валентин Валевский   31.10.2016 18:31   Заявить о нарушении

+ добавить замечания

На это произведение написано 47 рецензий, здесь отображается последняя, остальные — в полном списке.

Написать рецензию     Написать личное сообщение     Другие произведения автора Валентин Валевский

Д.В. СЕМЕНОВ

Партеногенез у пресмыкающихся

Наиболее заметное достижение отечественной герпетологии в минувшем веке, без сомнения, – открытие крупным российским зоологом Ильей Сергеевичем Даревским явления партеногенеза у ящериц.

Партеногенез – одна из форм полового размножения, при которой женские половые клетки развиваются без оплодотворения – широко распространен в царстве Флоры и среди различных беспозвоночных животных. Это было известно давно. Но для высокоорганизованных позвоночных партеногенез считался невозможным… до появления в 1958 г. сенсационной публикации И.С. Даревского в «Известиях Академии наук».

Начинающий тогда герпетолог, Даревский исследовал скальных ящериц Кавказа. Эти весьма обычные там ящерицы (относящиеся к обширному роду Lacerta из семейства настоящих ящериц) образуют сложный комплекс из множества внешне схожих видов, подвидов и рас, связанных сложными филогенетическими, географическими и экологическими отношениями. В настоящее время в этот комплекс включают около 25 видов, и некоторые систематики рассматривают его в качестве самостоятельного рода Даревския (Darevskia). Справедливости ради нужно сказать, что и более ранние исследователи отмечали отсутствие самцов в выборках из некоторых популяций скальных ящериц, но только Даревский понял, что эта странность не случайна, а представляет собой первое свидетельство существования феномена партеногенеза среди высших животных.

Представительница рода Даревския (Darevskia)

Уже через пару лет партеногенез был описан и в другом сложном комплексе ящериц – кнутохвостых, или кнемидофоров (род Cnemidophorus из североамериканского семейства Тейид, Teiidae).

После этих громких открытий внимание зоологов было привлечено к популяциям самых разных животных, в которых подозрительно преобладали самки или у которых самки приносили потомство без участия самцов. Как результат – целый каскад данных о партеногенезе в различных группах позвоночных. Существование партеногенетических популяций или появление потомства в результате однополого размножения было обнаружено у рыб, земноводных, птиц. К настоящему времени случаи однополого размножения не известны только среди млекопитающих, хотя и у представителей этого класса находят партеногенетические эмбрионы (которые, однако, погибают на ранних стадиях развития).

Но чешуйчатые пресмыкающиеся, и в первую очередь ящерицы, остаются самым интересным, важ-ным и перспективным объектом соответствующих научных исследований. Дело в том, что во всех остальных группах позвоночных партеногенез имеет факультативный характер, и только у ящериц (в 6 семействах, наиболее исследованные из которых – тейиды, настоящие ящерицы и гекконы) известны устойчивые популяции, состоящие из одних лишь самок. Партеногенез у чешуйчатых обнаружен также у игуан, хамелеонов, в семействах шипохвостов и ночных ящериц, а также у змей из семейств слепозмеек, удавовых, ужовых и ямкоголовых. Совсем недавно описаны случаи партеногенеза и у двух видов варанов, в том числе и у самой крупной из ныне живущих ящериц – комодского варана.

Механизм партеногенеза

Как известно, при обычном способе полового размножения после двух делений клетки в процессе мейоза образуются четыре гаплоидные гаметы, каждая из которых, соединяясь с гаметой особи противоположного пола, участвует в создании диплоидной зиготы. При партеногенезе же известно два основных механизма формирования генома потомства.

Одна форма однополого размножения – аутомиксис – также предполагает мейоз, однако образовавшиеся гаметы попарно соединяются друг с другом. При этом зигота может получить либо копии обеих материнских хромосом (центральное слияние), либо две копии одной из них (терминальное слияние).

Механизмы полового размножения и партеногенеза

Вторая форма – эндомитоз – с мейозом не связана. В этом случае происходит так называемое премейотическое удвоение хромосом с последующим делением клетки. Каждая дочерняя клетка получает точную копию генома матери (собственно, аналогично происходит и столь популярное сейчас клонирование). Именно этот механизм лежит в основе партеногенеза у однополых ящериц. У двуполых видов, у которых партеногенез отмечается лишь в отдельных случаях, он, очевидно, определяется аутомиксисом. Однако, поскольку случаи такие редки, их цитогенетическая природа изучена очень слабо.

Происхождение однополых ящериц

Различные аспекты эволюции партеногенеза у пресмыкающихся наиболее полно исследованы как раз в тех комплексах, у которых это явление и было впервые открыто, – у скальных и кнутохвостых ящериц. Из примерно 25 видов скальных ящериц 7 являются однополыми. В роде Cnemidophorus (45 видов) есть партеногенетические структуры как видового, так и под- и надвидового уровня. В целом не менее 30% популяций кнутохвостов состоят из одних лишь самок.

Многочисленные исследования, проведенные на этих группах, позволили сделать несколько важных эволюционных заключений.

  • Все партеногенетические виды образовались в результате гибридизации близкородственных двуполых видов. При этом в некоторых случаях процесс гибридизации происходил сложным образом и включал не два, а три родительских вида. Подобные события в комплексах скальных и кнутохвостых ящериц неудивительны. Ведь образующие их виды внешне и генетически очень сходны друг с другом, нередко обитают в одних и тех же местах, образуют сообщества и смешанные популяции. Появление среди них жизнеспособных гибридов, в том числе триплоидных и тетраплоидных, – явление обычное.
    Могут в таких комплексах образовываться и гибриды, способные к эндомитозу. А раз возникнув, такие организмы имеют много шансов сохраниться, поскольку им, чтобы оставить потомство, не нужны брачные партнеры.
  • Партеногенетические формы оказались эволюционно юными. В отличие от других таксонов видового или подвидового уровня, их возраст оценивается не тысячами и миллионами лет, а всего лишь сот-нями. То, что среди известных однополых видов ящериц нет «долгожителей», позволяет предполагать эволюционную недолговечность партеногенетических форм.
  • Однополые формы, в том числе и довольно широко распространенные, на всем протяжении своих ареалов представлены очень сходными – внешне и генетически – особями. Что, впрочем, не удивительно, если их происхождение действительно связано с немногими (или даже одним!) случаями гибридизации, а последующий эндомитоз не предполагает генетических изменений.

Нужно отметить, однако, что существует и альтернативная гипотеза возникновения однополых ящериц. Согласно ей, партеногенетические самки могли спонтанно (как мутации) появляться в двуполых популяциях. Далее они давали начало однополым клонам, которые, в свою очередь, могли гибридизировать с близкими видами, образуя новые (генетически отличающиеся) однополые формы.

Факультативный партеногенез у чешуйчатых пресмыкающихся

Многие случаи партеногенеза, обнаруженные в последние годы у представителей разных семейств ящериц и змей, не связаны с существованием однополых популяций. Это – примеры факультативного партеногенеза. Как правило, они отмечены у животных, содержавшихся в неволе, в условиях изоляции от сородичей.

Характерный пример – недавно опубликованное сообщение о партеногенезе у варана Varanus panoptes. Один немецкий террариумист приобрел пару молодых варанов для домашнего содержания. Оба животных оказались самками, агрессивно относившимися друг к другу. И в течение 5 лет их пришлось содержать в отдельных террариумах. Тем не менее обе самки отложили яйца. Любознательный владелец решил их на всякий случай положить в инкубатор. И оказался прав: из одного яйца вылупился детеныш-самец! И это несмотря на то, что его мать никогда в жизни не встречалась с самцами. То есть речь могла идти только о девственном размножении.

Варан

В дальнейшем эту же самку ссаживали с самцом, и она приносила потомство уже обычным образом, после спаривания. Специалисты изучили генетическую природу неожиданного потомка, а также его младших братьев и сестер, появившихся на свет обычным путем, с помощью метода ДНК-фингерпринтинга, позволяющего достаточно просто оценивать различия в геномах отдельных особей для выявления их родства. Оказалось, что детеныши, родившиеся после спаривания, как и положено, имели часть локусов от матери и часть – от отца. А самый первый сын генетически не менее чем на 94% был идентичен своей матери. Тем не менее, он не является ее клоном – ведь они разнополые. Сравнение этого случая с известными цитогенетическими моделями партеногенеза не обнаружило полного соответствия ни одной из них. С уверенностью можно говорить лишь о том, что обнаруженный феномен – пример факультативного партеногенеза, требующий дальнейших исследований.

Самцы у однополых видов ящериц

Итак, изредка партеногенез может случаться в популяциях двуполых видов чешуйчатых пресмыкающихся. Однако возможна и зеркальная ситуация: в однополых популяциях спонтанно могут появляться самцы. Такой атавистический возврат к бисексуальности известен, например, у партеногенетических скальных ящериц и гекконов. У них регулярно находят мужские эмбрионы, которые, как правило, погибают на ранних стадиях развития. Но иногда они выживают, и родившиеся особи достигают зрелого возраста. Такие самцы партеногенетического происхождения часто обладают явными самцовыми вторичными половыми признаками (например, окраской) и проявляют свойственное самцам поведение (агрессивное, брачное). Но в то же время у них присутствуют и признаки гермафродитизма и к собственно размножению они обычно не способны.

Эволюционные аспекты партеногенеза у чешуйчатых пресмыкающихся

Эволюционный выигрыш однополых форм кажется очевидным. Потомство могут приносить все особи в популяции, а не только самки. То есть вдвое увеличивается репродуктивный потенциал популяции, а следовательно, возможности ее выживания и расселения.

Партеногенез

При этом экономятся энергетические ресурсы, которые обычно расходуются на поиск брачных партнеров, на брачные турниры, на ухаживание и спаривание. Кроме того, известно, что любая активность, связанная со спариванием, а также вся закрепляемая половым отбором внеш-няя «яркость» заметно повышают риск атаки хищников. То есть, теоретически, смертность бисексуальных видов от хищничества должна быть выше. Косвенное тому подтверждение – выраженно менее яркая и броская окраска партеногенетических видов скальных ящериц в сравнении с их бисексуальными сородичами.

Еще одно явное преимущество однополых видов – практическое отсутствие нижнего порога численности жизнеспособной популяции. Известно, что у обычных видов снижение плотности популяции ниже определенного уровня приводит к практическому прекращению ее возобновления, – хотя еще есть и самки, и самцы, способные к размножению, им трудно разыскать себе партнера. А однополые формы могут успешно размножаться при любой плотности. Даже одна особь, случайно попавшая в новое место обитания, может стать основателем жизнеспособной колонии.

Слабые стороны однополости менее очевидны, но, вероятно, перекрывают эти предполагаемые преимущества – в противном случае партеногенез был бы распространен в природе гораздо шире. Главный «недостаток» – низкое генетическое разнообразие в однополых популяциях, что снижает возможность реагировать на происходящие с течением времени изменения среды. Кроме того, детальные исследования показывают, что «очевидные» преимущества однополых видов в природе реализуются далеко не в полной мере. Так, их плодовитость в сравнении с бисексуальными родичами не так уже и высока. Например, у гекконов комплекса Heteronotia binoei плодовитость самок в партеногенетических популяциях примерно на 30% ниже, чем в обычных. У ряда однополых видов эмбриональная смертность оказывается выше, чем у близких двуполых форм.

Способность к факультативному партеногенезу также имеет эволюционные преимущества. Она дает возможность оставить потомство в ситуациях резкого снижения численности или временного отсут-ствия контактов с другими особями. Подобное описано для водной бородавчатой змеи (Acrochordus arafurae). Бывает, что самки этого вида, оказавшиеся в мелких водоемах, не могут встретиться с самцами (поскольку по суше эти змеи перемещаются с трудом) и тогда начинают размножаться партеногенетически.

Водная бородавчатая змея

С позиций эволюционного учения явление партеногенеза имеет и более общее значение, поскольку существенно расширяет возможности эволюционного формообразования. Появление партеногенетических групп изменяет систему репродуктивной изоляции близких видов. Спариваясь с самцами материнских или близкородственных видов, пар-теногенетические самки могут давать жизнеспособное потомство с принципиально новым набором генов – этот принцип лежит в основе концепции «сетчатой эволюции». Сходную роль в преодолении репродуктивной изоляции могут играть также самцы, появляющиеся изредка в однополых популяциях, если они будут давать потомство, спариваясь с самками других видов.

Интересно, что принципиально иной способ размножения однополых рептилий позволяет лишь условно называть их ко-лонии «популяциями». Отсутствие генетического обмена между особями таких «популяций» делает неприменимым к ним и классическое определение биологического вида. По поводу таксономического положения таких форм между специалистами идет дискуссия. Например, исследователи скальных ящериц полагают, что партеногенез – дополнительная характеристика эволюционной обособленности. Поэтому те подвиды скальной ящерицы (Lacertasaxicola), у которых выявили однополость, были выделены в самостоятельные виды – Lacertaarmeniaca, Lacerta rostombekovi. А вот герпетологи, изучавшие кнутохвостых ящериц, обнаружив гибридное происхождение однополых видов, напротив, сочли это аргументом против их генетической обособленности и стали считать их подвидами соответствующих родительских видов.

Дочерние организмы развиваются из неоплодотворенных яйце­клеток. Открыт в середине XVIII в. швейцарским натуралистом III. Бонне.

Значение партеногенеза:

1) размножение возможно при редких контактах разнополых особей;

2) резко возрастает численность популяции, так как потом­ство, как правило, многочисленно;

3) встречается в популяциях с высокой смертностью в тече­ние одного сезона.

Виды партеногенеза:

1) облигатный (обязательный) партеногенез. Встречается в популяциях, состоящих исключительно из особей женского пола (у кавказской скалистой ящерицы). При этом вероят­ность встречи разнополых особей минимальна (скалы разделе­ны глубокими ущельями). Без партеногенеза вся популяция оказалась бы на грани вымирания;

2) циклический (сезонный) партеногенез (у тлей, дафний, ко­ловраток). Встречается в популяциях, которые исторически вымирали в больших количествах в определенное время года. У этих видов партеногенез сочетается с половым размножени­ем. При этом в летнее время существуют только самки, кото­рые откладывают два вида яиц — крупные и мелкие. Из круп­ных яиц партеногенетически появляются самки, а из мелких — самцы, которые оплодотворяют яйца, лежащие зи­мой на дне. Из них появляются исключительно самки;

3) факультативный (необязательный) партеногенез. Встречает­ся у общественных насекомых (ос, пчел, муравьев).

Индуцированный «партеногенез» млекопитающих

[ad010]

В популяции пчел из оплодотворенных яиц выходят самки (рабочие пчелы и царицы), из неоплодотворенных — самцы (трутни).

У этих видов партеногенез существует для регулирования

численного соотношения полов в популяции.

Выделяют также естественный (существует в естественных популяциях) и искусственный (используется человеком) парте­ногенез. Этот вид партеногенеза исследовал В. Н. Тихомиров. Он добился развития неоплодотворенных яиц тутового шелко­пряда, раздражая их тонкой кисточкой или погружая на несколь­ко секунд в серную кислоту (известно, что шелковую нить дают только самки).

Гиногенез(у костистых рыб и некоторых земноводных). Сперматозоид проникает в яйцеклетку и лишь стимулирует ее раз­витие. Ядро сперматозоида при этом с ядром яйцеклетки не сли­пнется и погибает, а источником наследственного материала для развития потомка служит ДНК ядра яйцеклетки.

Андрогенез. Вразвитии зародыша участвует мужское ядро, привнесенное в яйцеклетку, а ядро яйцеклетки при этом гибнет. Яйцеклетка дает лишь питательные вещества своей цитоплазмы.

Полиэмбриония.Зигота (эмбрион) делится на несколько частей бесполым способом, каждая из которых развивается в само­стоятельный организм. Встречается у насекомых (наездников), броненосцев. У броненосцев клеточный материал первоначально одною зародыша на стадии бластулы равномерно разделяется между 4—8 зародышами, каждый из которых в дальнейшем дает полноценную особь.

К этой категории явлений можно отнести появление однояйцевых близнецов у человека.

⇐ Предыдущая19202122232425262728

Дата добавления: 2014-09-04; просмотров: 2159; Опубликованный материал нарушает авторские права? | Защита персональных данных |

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также:


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

ya krevedko