Плазматическая мембрана

Плазматическая мембрана

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

Химический состав плазмалеммы:

I. Липиды: 1.Фосфолипиды. Молекула фосфолипида состоит из полярной (гидрофильной) части (головка) и аполярного (гидрофобного) двойного углеводного хвоста. В водной фазе молекулы фосфолипидов автоматически агрегируют хвост к хвосту, формируя каркас биологической мембраны в виде двойного слоя (бислой). Таким образом, в мембране хвосты фосфолипидов направлены внутрь бислоя, а головки обращены кнаружи. В ЭМ мембрана выглядит как трехслойная структура. Гидрофильные наружный и внутренний слои электроноплотные (темные), а гидрофобный средний слой светлый. Это объясняется тем, что тетраоксид осмия, используемый для контрастирования, связывается с гидрофильными головками фосфолипидного бислоя, а также с встроенными в мембрану белками.

Проницаемость мембраны. Гидрофобный характер сердцевины бислоя определяет возможность (или невозможность) непосредственного проникновения через мембрану различных с физико-химической точки зрения веществ.

Неполярные вещества (например, холестерин и его производные) свободно проникают через биологические мембраны. По этой же причине эндоцитоз и экзоцитоз полярных соединений (например, пептидных гормонов) происходят при помощи мембранных пузырьков, а секреция стероидных гормонов – без участия таких пузырьков. По этой же причине рецепторы неполярных молекул (например, стероидных гормонов) расположены внутри клетки.

Полярные вещества (например, белки и ионы) не могут проникать через биологические мембраны. Именно поэтому рецепторы полярных молекул (например, пептидных гормонов) встроены в плазматическую мембрану, а передачу сигнала к другим клеточным компарментам осуществляют вторые посредники. По этой причине трансмембранный перенос полярных соединений осуществляют специальные системы, встроенные в биологические мембраны.

II. Арахиновая кислота. Из мембранных фосфолипидов освобождается арахиновая кислота – предшественник простагландинов, тромбоксанов, лейкотриенов и ряда других биологически активных веществ с множеством функций (медиаторы воспаления, вазоактивные факторы, вторые посредники и др.).

III. Липосомы.Искусственно приготовленные из фосфолипидов мембранные пузырьки диаметром от 25 нм до 1 мкм. Липосомы используют как модели биологических мембран, а также для введения внутрь клетки различных ваеществ(например, генов, лекарственных преператов); последнее обстоятельство основано на том, что мембранные структуры (в т.ч. и липисомы) легко сливаются (за счет фосфолипидного бислоя).

2. Сфинголипиды — липиды, содержащие основание с длинной цепью (сфингозин или сходную с ним группу); сфинголипиды в значительном количестве находятся в миелиновых оболочках нервных волокон, слоев модифицированной плазмалеммы шванновских клеток и олигодендроглиоцитов ЦНС.

Сфинголипидозы — различные болезни, характеризующиеся аномальным метаболизм сфинголипидов.

Церебральный сфинголипидоз – общее наименование группы наследственных заболеваний, характеризующихся мышечным гипертонусом, прогрессирующим спастическим параличом, потерей зрения (обычно с центральной дегенерацией сетчатки и атрофией зрительного нерва), судорогами и умственными дефектами; сочетается с аномальным отложением сфингомиелина и родственных липидов.

3. Холестерин этот стероид имеет чрезвычайно важное значение не только как компонент биологических мембран.

Стероидные гормоны. На основе холестерина происходит синтез стероидных гормонов – половых, глюкокортикоидов, минералкортикоидов.

Липопротеины. Холестерин циркулирует во внутренней среде организма в составе липопротеинов. Транспорт холестерина осуществляют липопротеины низкой плотности (ЛНП), очень низкой плотности (ЛОНТ) и липопротеины высокой плотности (ЛВП). Вероятность атеросклеротического поражения сосудов (в т. ч. ишемическая болезнь сердца — ИБС) прямо пропорциональна уровню общего холестерина сыворотки крови. Чем выше выраженее гиперхолестеринемия (точнее, отношение содержания холестерина в ЛНП к содержанию холестерина в ЛВП), тем выше риск развития ИБС.

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

При отношении ЛНП к ЛВП более 5:1 риск развития ИБС очень высок. Высокий уровень ЛВП предотвращает развитие ИБС. Считают, что ЛВП способствуют удалению холестерина из коронарных сосудов.

IV. Белкисоставляют более 50% массы мембран. Большинство мембранных белков имеет глобулярную структуру.

Интегральные мембранные белки прочно встроены в липидный бислой. Их гидрофильные аминокислоты взаимодействуют с фосфатными группами фосфолипидов, а гидрофобные – цепями жирных кислот. Примеры интегральных мембранных белков – белки ионных каналов и рецепторные белки (мембранные рецепторы). Молекула белка, проходящая через всю толщу мембраны и выступающая из нее как на наружной, так и на внутренней поверхности – трансмембранный белок.

Периферические мембранные белки (фибриллярные и глобулярные) находятся на одной из поверхностей клеточной мембраны (наружной или внутренней) и нековалентно связаны с интегральными мембранными белками.

Наружная поверхность. Примерами периферических мембранных белков, связанных с наружной поверхностью мембраны, могут служить рецепторные и адгезионные белки.

Внутренняя поверхность. Примеры периферических мембранных белков, связанных с внутренней поверхностью мембраны, — белки цитоскелета (например, спектрины, анкирин), белки системы вторых посредников.

V. Углеводы. (преимущественно олигосахариды) входят в состав гликопротеинов и гликопротеидов мембраны, составляя 2-10% ее массы. С углеводами клеточной поверхности взаимодействуют лектины. Цепи олигосахаридов выступают на наружной поверхности мембран клетки и формируют поверхностную оболочку – гликокаликс.

Организация плазматической мембраны.

1. Общепринята жидкостно-мозаичная модель.

2. Для интегральных белков характерна латеральная подвижность, они могут перераспределяться в мембранах в результате взаимодействия с периферическими белками, элементами цитоскелета, молекулами в мембране соседней клетки и компонентами внеклеточного матрикса.

3. Скопление интегральных белков в одном участке мембраны – кэппинг.

4. Гликокаликс: толщина = 50 нм;

Состав. Гликокаликс состоит из олигосахаридов, ковалентно связанных с гликопротеинами и гликолипидами плазмолеммы.

Функции.

1. Межклеточное узнавание.

2. Межклеточное взаимодействие.

3. Пристеночное пищеварение. Гликокаликс, покрывающий микроворсинки каемчатых клеток эпителия кишечника, содержит пептитазы и гликозидазы, завершающие расщепление белков и углеводов.

Рекомендуемые страницы:

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) — вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

Строение клеточной мембраны

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая — пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков. Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.

Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO2, O2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик).

Ассиметричность плазматической мембраны

Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример — натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз — это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) — синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

Химический состав плазмалеммы:

I. Липиды: 1.Фосфолипиды. Молекула фосфолипида состоит из полярной (гидрофильной) части (головка) и аполярного (гидрофобного) двойного углеводного хвоста. В водной фазе молекулы фосфолипидов автоматически агрегируют хвост к хвосту, формируя каркас биологической мембраны в виде двойного слоя (бислой). Таким образом, в мембране хвосты фосфолипидов направлены внутрь бислоя, а головки обращены кнаружи. В ЭМ мембрана выглядит как трехслойная структура. Гидрофильные наружный и внутренний слои электроноплотные (темные), а гидрофобный средний слой светлый. Это объясняется тем, что тетраоксид осмия, используемый для контрастирования, связывается с гидрофильными головками фосфолипидного бислоя, а также с встроенными в мембрану белками.

Проницаемость мембраны. Гидрофобный характер сердцевины бислоя определяет возможность (или невозможность) непосредственного проникновения через мембрану различных с физико-химической точки зрения веществ.

Неполярные вещества (например, холестерин и его производные) свободно проникают через биологические мембраны. По этой же причине эндоцитоз и экзоцитоз полярных соединений (например, пептидных гормонов) происходят при помощи мембранных пузырьков, а секреция стероидных гормонов – без участия таких пузырьков. По этой же причине рецепторы неполярных молекул (например, стероидных гормонов) расположены внутри клетки.

Полярные вещества (например, белки и ионы) не могут проникать через биологические мембраны. Именно поэтому рецепторы полярных молекул (например, пептидных гормонов) встроены в плазматическую мембрану, а передачу сигнала к другим клеточным компарментам осуществляют вторые посредники. По этой причине трансмембранный перенос полярных соединений осуществляют специальные системы, встроенные в биологические мембраны.

II. Арахиновая кислота. Из мембранных фосфолипидов освобождается арахиновая кислота – предшественник простагландинов, тромбоксанов, лейкотриенов и ряда других биологически активных веществ с множеством функций (медиаторы воспаления, вазоактивные факторы, вторые посредники и др.).

III.

Липосомы.Искусственно приготовленные из фосфолипидов мембранные пузырьки диаметром от 25 нм до 1 мкм. Липосомы используют как модели биологических мембран, а также для введения внутрь клетки различных ваеществ(например, генов, лекарственных преператов); последнее обстоятельство основано на том, что мембранные структуры (в т.ч.

Урок биологии в 10-м классе "Строение и функции органоидов клетки. Плазматическая мембрана"

и липисомы) легко сливаются (за счет фосфолипидного бислоя).

2. Сфинголипиды — липиды, содержащие основание с длинной цепью (сфингозин или сходную с ним группу); сфинголипиды в значительном количестве находятся в миелиновых оболочках нервных волокон, слоев модифицированной плазмалеммы шванновских клеток и олигодендроглиоцитов ЦНС.

Сфинголипидозы — различные болезни, характеризующиеся аномальным метаболизм сфинголипидов.

Церебральный сфинголипидоз – общее наименование группы наследственных заболеваний, характеризующихся мышечным гипертонусом, прогрессирующим спастическим параличом, потерей зрения (обычно с центральной дегенерацией сетчатки и атрофией зрительного нерва), судорогами и умственными дефектами; сочетается с аномальным отложением сфингомиелина и родственных липидов.

3. Холестерин этот стероид имеет чрезвычайно важное значение не только как компонент биологических мембран.

Стероидные гормоны. На основе холестерина происходит синтез стероидных гормонов – половых, глюкокортикоидов, минералкортикоидов.

Липопротеины. Холестерин циркулирует во внутренней среде организма в составе липопротеинов. Транспорт холестерина осуществляют липопротеины низкой плотности (ЛНП), очень низкой плотности (ЛОНТ) и липопротеины высокой плотности (ЛВП). Вероятность атеросклеротического поражения сосудов (в т. ч. ишемическая болезнь сердца — ИБС) прямо пропорциональна уровню общего холестерина сыворотки крови. Чем выше выраженее гиперхолестеринемия (точнее, отношение содержания холестерина в ЛНП к содержанию холестерина в ЛВП), тем выше риск развития ИБС. При отношении ЛНП к ЛВП более 5:1 риск развития ИБС очень высок. Высокий уровень ЛВП предотвращает развитие ИБС. Считают, что ЛВП способствуют удалению холестерина из коронарных сосудов.

IV. Белкисоставляют более 50% массы мембран. Большинство мембранных белков имеет глобулярную структуру.

Интегральные мембранные белки прочно встроены в липидный бислой. Их гидрофильные аминокислоты взаимодействуют с фосфатными группами фосфолипидов, а гидрофобные – цепями жирных кислот. Примеры интегральных мембранных белков – белки ионных каналов и рецепторные белки (мембранные рецепторы). Молекула белка, проходящая через всю толщу мембраны и выступающая из нее как на наружной, так и на внутренней поверхности – трансмембранный белок.

Периферические мембранные белки (фибриллярные и глобулярные) находятся на одной из поверхностей клеточной мембраны (наружной или внутренней) и нековалентно связаны с интегральными мембранными белками.

Наружная поверхность. Примерами периферических мембранных белков, связанных с наружной поверхностью мембраны, могут служить рецепторные и адгезионные белки.

Внутренняя поверхность. Примеры периферических мембранных белков, связанных с внутренней поверхностью мембраны, — белки цитоскелета (например, спектрины, анкирин), белки системы вторых посредников.

V. Углеводы. (преимущественно олигосахариды) входят в состав гликопротеинов и гликопротеидов мембраны, составляя 2-10% ее массы. С углеводами клеточной поверхности взаимодействуют лектины. Цепи олигосахаридов выступают на наружной поверхности мембран клетки и формируют поверхностную оболочку – гликокаликс.

Организация плазматической мембраны.

1. Общепринята жидкостно-мозаичная модель.

2. Для интегральных белков характерна латеральная подвижность, они могут перераспределяться в мембранах в результате взаимодействия с периферическими белками, элементами цитоскелета, молекулами в мембране соседней клетки и компонентами внеклеточного матрикса.

3. Скопление интегральных белков в одном участке мембраны – кэппинг.

4. Гликокаликс: толщина = 50 нм;

Состав. Гликокаликс состоит из олигосахаридов, ковалентно связанных с гликопротеинами и гликолипидами плазмолеммы.

Функции.

1. Межклеточное узнавание.

2. Межклеточное взаимодействие.

3. Пристеночное пищеварение. Гликокаликс, покрывающий микроворсинки каемчатых клеток эпителия кишечника, содержит пептитазы и гликозидазы, завершающие расщепление белков и углеводов.

Рекомендуемые страницы:

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) — вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

Строение клеточной мембраны

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая — пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков. Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.

Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO2, O2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример — натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки.

Плазматическая мембрана

Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз — это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) — синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

Клетка любого организма представляет собой целостную живую систему. Она состоит из трех неразрывно связанных между собой частей: оболочки, цитоплазмы и ядра. Оболочка клетки осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах). 

Оболочка клеток

Оболочка клеток имеет сложное строение.

Строение и функции плазматических мембран

Она состоит из наружного слоя и расположенной под ним плазматической мембраны. Клетки животных и растений (рисунок 49, 50, 51) различаются по строению их наружного слоя. У растений, а также у бактерий, сине-зеленых водорослей и грибов на поверхности клеток расположена плотная оболочка, или клеточная стенка. У большинства растений она состоит из клетчатки. 

Рисунок 49. Схемы строения клеток по данным светового микроскопа.

Клеточная стенка играет исключительно важную роль: она представляет собой внешний каркас, защитную оболочку, обеспечивает тургор растительных клеток; через клеточную стенку проходит вода, соли, молекулы многих органических веществ. 

Рисунок 50. Схема строения животной клетки по данным электронного микроскопа.

Наружный слой поверхности клеток животных (рисунок 49, 50) в отличие от клеточных стенок растений очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток получил название гликокаликс.

Рисунок 51. Схема строения растительной клетки по данным электронного микроскопа.

Гликокаликс выполняет прежде всего функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами. Имея незначительную толщину (меньше 1 мкм), наружный слой клетки животных не выполняет опорной роли, какая свойственна клеточным стенкам растений. Образование гликокаликса, так же как и клеточных стенок растений, происходит благодаря жизнедеятельности самих клеток. 

Плазматическая мембрана

Под гликокаликсом и клеточной стенкой растений расположена плазматическая мембрана (лат. «мембрана» — кожица, пленка), граничащая непосредственно с цитоплазмой — рисунок 52. Толщина плазматической мембраны около 10 нм, изучение ее строения и функций возможно только с помощью электронного микроскопа.

Рисунок 52. Строение плазматической мембраны (электронно-микроскопическая фотография — вверху).

В состав плазматической мембраны входят белки и липиды. Они упорядоченно расположены и соединены друг с другом химическими взаимодействиями. По современным представлениям молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной слой. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину, как это показано на рисунке 52.

Молекулы белка и липидов подвижны, что обеспечивает динамичность плазматической мембраны.

Плазматическая мембрана выполняет много важных функций от которых зависит жизнедеятельность клеток. Одна из таких функций заключается в том, что она образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды. Но между клетками и внешней средой постоянно происходит обмен веществ. Из внешней среды в клетку поступает вода, разнообразные соли в форме отдельных ионов, неорганические и органические молекулы. Они проникают в клетку через очень тонкие каналы плазматической мембраны. Во внешнюю среду выводятся продукты, образованные в клетке. Транспорт веществ — одна из главных функций плазматической мембраны.

Через плазматическую мембрану из клетки выводятся продукты обмена, а также вещества, синтезированные в клетке. К числу их относятся разнообразные белки, углеводы, гормоны, которые вырабатываются в клетках различных желез и выводятся во внеклеточную среду в форме мелких капель.

Клетки, образующие у многоклеточных животных разнообразные ткани (эпителиальную, мышечную и др.), соединяются друг с другом плазматической мембраной. В местах соединения двух клеток мембрана каждой из них может образовывать складки или выросты, которые придают соединениям особую прочность (рисунок 53). 

Рисунок 53. Электронно-микроскопическая фотография мембран двух соседних клеток.
Видны складки и выросты наружной мембраны, увеличивающие прочность соединения клеток. Увеличение 30 000.

Соединение клеток растений обеспечивается путем образования тонких каналов, которые заполнены цитоплазмой и ограничены плазматической мембраной. По таким каналам, проходящим через клеточные оболочки, из одной клетки в другую поступают питательные вещества, ионы, углеводы и другие соединения.

На поверхности многих клеток животных, например различных эпителиев, находятся очень мелкие тонкие выросты цитоплазмы, покрытые плазматической мембраной — микроворсинки. Наибольшее количество микроворсинок находится на поверхности клеток кишечника, где происходит интенсивное переваривание и всасывание переваренной пищи.

Фагоцитоз

Крупные молекулы органических веществ, например белков и полисахаридов, частицы пищи, бактерии поступают в клетку путем фагоцитоза (греч. «фагео» — пожирать). В фагоцитозе непосредственное участие принимает плазматическая мембрана (рисунок 54). В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в «мембранной упаковке» погружается внутрь клетки. Образуется пищеварительная вакуоль и в ней перевариваются поступившие в клетку органические вещества.

Рисунок 54.Схема пиноцитоза. Фагоцитоз у амебы.

Фагоцитоз широко распространен в мире животных. Путем фагоцитоза питаются амебы, инфузории и многие другие простейшие. У позвоночных животных и человека к активному фагоцитозу способны только немногие клетки, например лейкоциты. Эти клетки поглощают бактерии, а также разнообразные твердые частички, случайно попавшие в организм, защищая его таким образом от болезнетворных микроорганизмов и посторонних частиц. Клеточная стенка растений, бактерий и сине-зеленых водорослей препятствует фагоцитозу и потому этот путь поступления веществ в клетку у них практически отсутствует. 

Пиноцитоз

Через плазматическую мембрану в клетку проникают и капли жидкости, содержащие в растворенном и взвешенном состоянии разнообразные вещества.

Поглощение жидкости в виде мелких капель напоминает питье, и это явление было вызвано пиноцитозом (греч. «пино» — пью). Процесс поглощения жидкости сходен с фагоцитозом. Капля жидкости погружается в цитоплазму в «мембранной упаковке». Органические вещества, попавшие в клетку вместе с водой, начинают перевариваться под влиянием ферментов, содержащихся в цитоплазме.

Пиноцитоз широко распространен в природе и осуществляется клетками животных, растений, грибов, бактерий и сине-зеленых водорослей.

Процессы фаго- и пиноцитоза, транспорт ионов и молекул происходит с затратой энергии, которая образуется в клетке. 

Основы цитологии

  1. Клеточная теория
  2. Строение и функции оболочки клетки
  3. Цитоплазма и ее органоиды: эндоплазматическая сеть, митохондрии и пластиды
  4. Аппарат Гольджи, лизосомы и другие органоиды цитоплазмы. Клеточные включения
  5. Клеточное ядро
  6. Прокариотические клетки
  7. Неклеточные формы жизни — вирусы
  8. Химический состав клетки. Неорганические вещества
  9. Органические вещества клетки. Белки, их строение
  10. Свойства и функции белков
  11. Углеводы. Липиды
  12. Нуклеиновые кислоты — ДНК и РНК
  13. Обмен веществ клетки. Аденозинтрифосфорная кислота — АТФ
  14. Энергетический обмен в клетке. Синтез АТФ
  15. Пластический обмен. Биосинтез белков. Синтез и-РНК
  16. Синтез полипептидной цепи на рибосоме
  17. Особенности пластического и энергетического обменов растительной клетки

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) — вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

Строение клеточной мембраны

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая — пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков. Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.

Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

[ad010]

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO2, O2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример — натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз — это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ.

Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) — синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

ya krevedko