Процент от числа

Процент от числа

Содержание

Как посчитать процент от суммы чисел в Excel

Программа Microsoft Excel позволяет быстро работать с процентами: находить их, суммировать, прибавлять к числу, рассчитывать процентный прирост, процент от числа, от суммы и т.д. Такие навыки могут пригодиться в самых разнообразных сферах жизни.

В повседневной жизни мы все чаще сталкиваемся с процентами: скидки, кредиты, депозиты и т.д. Поэтому важно уметь их правильно вычислять. Познакомимся поближе с техниками, которые предлагает встроенный инструментарий табличного процессора.

Как посчитать процент от числа в Excel

Перед тем как посчитать проценты от суммы определимся с понятием «процент». Оно имеет латинское происхождение и дословно переводится как «из сотни». Это определенная часть из 100 долей целого.

Математическая формула расчета процентов выглядит следующим образом: (искомая часть / целое число) * 100.

Чтобы найти процент от числа, применяется такой вариант формулы: (число * процент) / 100. Либо перенести запятую в процентах на 2 знака влево и выполнить только умножение. Например, 10% от 100 – это 0,1 * 100 = 10.

Какую именно формулу применить в Excel, зависит от желаемого результата.

Задача №1: Найти, сколько составит 20% от 400.

  1. Делаем активной ячейку, в которой хотим увидеть результат.
  2. В строку формул или сразу в ячейку вводим =A2*B2.

Так как мы сразу применили процентный формат, не пришлось использовать математическое выражение в 2 действия.

Как назначить для ячейки процентный формат? Выбирайте любой удобный для вас способ:

  • ввести сразу число со знаком «%» (ячейка автоматически установит нужный формат);
  • щелкнуть по ячейке правой кнопкой мыши, выбрать «Формат ячеек» — «Процентный»;
  • выделить ячейку и нажать комбинацию горячих клавиш CTRL+SHIFT+5.

Без использования процентного формата в ячейку вводится обычная формула: =A2/100*B2.

Такой вариант нахождения процента от числа тоже применяется пользователями.

Задача №2: Заказано 100 изделий. Доставлено – 20. Найти, сколько процентов заказа выполнено.

  1. Установить для нужной ячейки процентный формат.
  2. Ввести формулу: =B2/A2. Нажать ВВОД.

В этой задаче мы снова обошлись одним действием. Частное не пришлось умножать на 100, т.к. для ячейки назначен процентный формат.

Вводить в отдельную ячейку проценты совсем не обязательно. У нас в одной ячейке может быть число. А во второй – формула нахождения процента от числа (=A2*20%).



Как прибавить проценты к числу в Excel?

В математике мы сначала находим проценты от числа, а потом выполняем сложение. Microsoft Excel выполняет то же самое.

Считаем процент от числа в Excel

Нам нужно правильно ввести формулу.

Задача: Прибавить 20 процентов к числу 100.

  1. Значения вносим в ячейки с соответствующими форматами: число – с числовым (или общим), процент – с процентным.
  2. Вводим формулу: =A2+A2*B2.

Для решения такой же задачи может использоваться и другая формула: =A2*(1+B2).

Разница между числами в процентах в Excel

Пользователю необходимо найти разницу между числовыми значениями в процентном отношении. К примеру, вычислить, насколько увеличилась / уменьшилась цена поставщика, прибыль предприятия, стоимость коммунальных услуг и т.д.

То есть имеется числовое значение, которое с течением времени, в силу обстоятельств поменялось. Чтобы найти разницу в процентах, необходимо использовать формулу:

(«новое» число – «старое» число) / «старое» число * 100%.

Задача: Найти разницу в процентах между «старыми» и «новыми» ценами поставщика.

  1. Сделаем третий столбец «Динамика в процентах». Назначим для ячеек процентный формат.
  2. Поставим курсор в первую ячейку столбца, введем формулу: =(В2-А2)/В2.
  3. Нажмем Enter. И протянем формулу вниз.

Разница в процентном отношении имеет положительное и отрицательное значение. Установление процентного формата позволило упростить исходную формулу расчета.

Разница в процентах между двумя числами в формате ячеек по умолчанию («Общий») вычисляется по следующей формуле: =(B1-A1)/(B1/100).

Как умножить на проценты в Excel

Задача: 10 кг соленой воды содержит 15% соли. Сколько килограммов соли в воде?

Решение сводится к одному действию: 10 * 15% = 10 * (15/100) = 1,5 (кг).

Как решить эту задачу в Excel:

  1. Ввести в ячейку В2 число 10.
  2. Поставить курсор в ячейку C2 и ввести формулу: =В2 * 15%.
  3. Нажать Enter.

Нам не пришлось преобразовывать проценты в число, т.к. Excel отлично распознает знак «%».

Если числовые значения в одном столбце, а проценты – в другом, то в формуле достаточно сделать ссылки на ячейки. Например, =B9*A9.

Расчет процентов по кредиту в Excel

Задача: В кредит взяли 200 000 рублей на год. Процентная ставка – 19%. Погашать будем в течение всего срока равными платежами. Вопрос: какой размер ежемесячного платежа при данных условиях кредитования?

Важные условия для выбора функции: постоянство процентной ставки и сумм ежемесячных платежей. Подходящий вариант функция – «ПЛТ()». Она находиться в разделе «Формулы»-«Финансовые»-«ПЛТ»

  1. Ставка – процентная ставка по кредиту, разделенная на количество периодов начисления процентов (19%/12, или В2/12).
  2. Кпер – число периодов выплат по кредиту (12).
  3. ПС – сумма займа (200 000 р., или В1).
  4. Поля аргументов «БС» и «Тип» оставим без внимания.

Результат со знаком «-», т.к. деньги кредитополучатель будет отдавать.

Задачи на проценты: считаем проценты с помощью пропорции

В прошлом видеоуроке мы рассматривали решение задач на проценты с помощью пропорций. Тогда по условию задачи нам требовалось найти значение той или иной величины.

В этот раз исходное и конечное значения нам уже даны. Поэтому в задачах будет требоваться найти проценты. Точнее, на сколько процентов изменилась та или иная величина. Давайте попробуем.

Задача. Кроссовки стоили 3200 рублей. После повышения цены они стали стоить 4000 рублей. На сколько процентов была повышена цена на кроссовки?

Итак, решаем через пропорцию. Первый шаг — исходная цена была равна 3200 рублей. Следовательно, 3200 рублей — это 100%.

Кроме того, нам дана конечная цена — 4000 рублей. Это неизвестное количество процентов, поэтому обозначим его за x.

Вычисление процентов

Получим следующую конструкцию:

3200 — 100%
4000 — x%

Что ж, условие задачи записано. Составляем пропорцию:

Дробь слева прекрасно сокращается на 100: 3200 : 100 = 32; 4000 : 100 = 40. Кроме того, можно сократить на 4: 32 : 4 = 8; 40 : 4 = 10. Получим следующую пропорцию:

Воспользуемся основным свойством пропорции: произведение крайних членов равно произведению средних. Получаем:

8 · x = 100 · 10;
8x = 1000.

Это обычное линейное уравнение. Отсюда находим x:

x = 1000 : 8 = 125

Итак, мы получили итоговый процент x = 125. Но является ли число 125 решением задачи? Нет, ни в коем случае! Потому что в задачи требуется узнать, на сколько процентов была повышена цена на кроссовки.

На сколько процентов — это значит, что нам нужно найти изменение:

∆ = 125 − 100 = 25

Получили 25% — именно настолько была повышена исходная цена. Это и является ответом: 25.

Задача B2 на проценты №2

Переходим ко второй задаче.

Задача. Рубашка стоила 1800 рублей. После снижения цены она стала стоить 1530 рублей. На сколько процентов была снижена цена на рубашку?

Переводим условие на математический язык. Исходная цена 1800 рублей — это 100%. А итоговая цена 1530 рублей — она нам известна, но неизвестно, сколько процентов она составляет от исходной величины. Поэтому обозначим ее за x. Получим следующую конструкцию:

1800 — 100%
1530 — x%

На основе полученной записи составляем пропорцию:

Давайте для упрощения дальнейших вычислений разделим обе части данного уравнения на 100. Другими словами, у числителя левой и правой дроби мы зачеркнем два нуля. Получим:

Теперь снова воспользуемся основным свойством пропорции: произведение крайних членов равно произведению средних.

18 · x = 1530 · 1;
18x = 1530.

Осталось найти x:

x = 1530 : 18 = (765 · 2) : (9 · 2) = 765 : 9 = (720 + 45) : 9 = 720 : 9 + 45 : 9 = 80 + 5 = 85

Как видите, мы не стали считать полученное частное уголком, а просто несколько раз сократили нашу дробь. При этом нам потребовалось разложить на множители числитель и

Мы получили, что x = 85. Но, как и в прошлой задаче, это число само по себе не является ответом. Давайте вернемся к нашему условию. Теперь мы знаем, что новая цена, полученная после снижения, составляет 85% от старой. И для того, чтобы найти изменения, нужно из старой цены, т.е. 100%, вычесть новую цену, т.е. 85%. Получим:

∆ = 100 − 85 = 15

Это число и будет ответом: Обратите внимание: именно 15, а ни в коем случае не 85. Вот и все! Задача решена.

Внимательные ученики наверняка спросят: почему в первой задаче мы при нахождении разности вычитали из конечного числа начальное, а во второй задаче поступили в точности до наоборот: из исходных 100% вычли конечные 85%?

Давайте проясним этот момент. Формально, в математике изменением величины всегда называется разность между конечным значением и начальным. Другими словами, во второй задаче у нас должно было получиться не 15, а −15.

Однако этот минус ни в коем случае не должен попасть в ответ, потому что он уже учтен в условии исходной задачи. Там прямо сказано о снижении цены. А снижение цены на 15% — это то же самое, что повышение цены на −15%. Именно поэтому в решении и ответе задачи достаточно написать просто 15 — без всяких минусов.

Все, надеюсь, с этим моментом мы разобрались. На этом наш сегодняшний урок закончен. До новых встреч!

Смотрите также:

  1. Задачи на проценты: стандартный расчет с помощью пропорций
  2. Процент: неизвестно начальное значение (метод пропорции)
  3. Как решать квадратные уравнения
  4. Теорема Виета
  5. Репетитор по математике и помощь экстернату
  6. Семинар: ЕГЭ по математике, задачи B3 на площади

Как посчитать процент от суммы чисел в Excel

Программа Microsoft Excel позволяет быстро работать с процентами: находить их, суммировать, прибавлять к числу, рассчитывать процентный прирост, процент от числа, от суммы и т.д. Такие навыки могут пригодиться в самых разнообразных сферах жизни.

В повседневной жизни мы все чаще сталкиваемся с процентами: скидки, кредиты, депозиты и т.д. Поэтому важно уметь их правильно вычислять. Познакомимся поближе с техниками, которые предлагает встроенный инструментарий табличного процессора.

Как посчитать процент от числа в Excel

Перед тем как посчитать проценты от суммы определимся с понятием «процент». Оно имеет латинское происхождение и дословно переводится как «из сотни». Это определенная часть из 100 долей целого.

Математическая формула расчета процентов выглядит следующим образом: (искомая часть / целое число) * 100.

Чтобы найти процент от числа, применяется такой вариант формулы: (число * процент) / 100. Либо перенести запятую в процентах на 2 знака влево и выполнить только умножение. Например, 10% от 100 – это 0,1 * 100 = 10.

Какую именно формулу применить в Excel, зависит от желаемого результата.

Задача №1: Найти, сколько составит 20% от 400.

  1. Делаем активной ячейку, в которой хотим увидеть результат.
  2. В строку формул или сразу в ячейку вводим =A2*B2.

Так как мы сразу применили процентный формат, не пришлось использовать математическое выражение в 2 действия.

Как назначить для ячейки процентный формат? Выбирайте любой удобный для вас способ:

  • ввести сразу число со знаком «%» (ячейка автоматически установит нужный формат);
  • щелкнуть по ячейке правой кнопкой мыши, выбрать «Формат ячеек» — «Процентный»;
  • выделить ячейку и нажать комбинацию горячих клавиш CTRL+SHIFT+5.

Без использования процентного формата в ячейку вводится обычная формула: =A2/100*B2.

Такой вариант нахождения процента от числа тоже применяется пользователями.

Задача №2: Заказано 100 изделий. Доставлено – 20. Найти, сколько процентов заказа выполнено.

Как посчитать проценты: от числа, от суммы чисел и др.

  1. Установить для нужной ячейки процентный формат.
  2. Ввести формулу: =B2/A2. Нажать ВВОД.

В этой задаче мы снова обошлись одним действием. Частное не пришлось умножать на 100, т.к. для ячейки назначен процентный формат.

Вводить в отдельную ячейку проценты совсем не обязательно. У нас в одной ячейке может быть число. А во второй – формула нахождения процента от числа (=A2*20%).



Как прибавить проценты к числу в Excel?

В математике мы сначала находим проценты от числа, а потом выполняем сложение. Microsoft Excel выполняет то же самое. Нам нужно правильно ввести формулу.

Задача: Прибавить 20 процентов к числу 100.

  1. Значения вносим в ячейки с соответствующими форматами: число – с числовым (или общим), процент – с процентным.
  2. Вводим формулу: =A2+A2*B2.

Для решения такой же задачи может использоваться и другая формула: =A2*(1+B2).

Разница между числами в процентах в Excel

Пользователю необходимо найти разницу между числовыми значениями в процентном отношении. К примеру, вычислить, насколько увеличилась / уменьшилась цена поставщика, прибыль предприятия, стоимость коммунальных услуг и т.д.

То есть имеется числовое значение, которое с течением времени, в силу обстоятельств поменялось. Чтобы найти разницу в процентах, необходимо использовать формулу:

(«новое» число – «старое» число) / «старое» число * 100%.

Задача: Найти разницу в процентах между «старыми» и «новыми» ценами поставщика.

  1. Сделаем третий столбец «Динамика в процентах». Назначим для ячеек процентный формат.
  2. Поставим курсор в первую ячейку столбца, введем формулу: =(В2-А2)/В2.
  3. Нажмем Enter. И протянем формулу вниз.

Разница в процентном отношении имеет положительное и отрицательное значение. Установление процентного формата позволило упростить исходную формулу расчета.

Разница в процентах между двумя числами в формате ячеек по умолчанию («Общий») вычисляется по следующей формуле: =(B1-A1)/(B1/100).

Как умножить на проценты в Excel

Задача: 10 кг соленой воды содержит 15% соли. Сколько килограммов соли в воде?

Решение сводится к одному действию: 10 * 15% = 10 * (15/100) = 1,5 (кг).

Как решить эту задачу в Excel:

  1. Ввести в ячейку В2 число 10.
  2. Поставить курсор в ячейку C2 и ввести формулу: =В2 * 15%.
  3. Нажать Enter.

Нам не пришлось преобразовывать проценты в число, т.к. Excel отлично распознает знак «%».

Если числовые значения в одном столбце, а проценты – в другом, то в формуле достаточно сделать ссылки на ячейки. Например, =B9*A9.

Расчет процентов по кредиту в Excel

Задача: В кредит взяли 200 000 рублей на год. Процентная ставка – 19%. Погашать будем в течение всего срока равными платежами. Вопрос: какой размер ежемесячного платежа при данных условиях кредитования?

Важные условия для выбора функции: постоянство процентной ставки и сумм ежемесячных платежей. Подходящий вариант функция – «ПЛТ()». Она находиться в разделе «Формулы»-«Финансовые»-«ПЛТ»

  1. Ставка – процентная ставка по кредиту, разделенная на количество периодов начисления процентов (19%/12, или В2/12).
  2. Кпер – число периодов выплат по кредиту (12).
  3. ПС – сумма займа (200 000 р., или В1).
  4. Поля аргументов «БС» и «Тип» оставим без внимания.

Результат со знаком «-», т.к. деньги кредитополучатель будет отдавать.

Задачи на проценты: считаем проценты с помощью пропорции

В прошлом видеоуроке мы рассматривали решение задач на проценты с помощью пропорций. Тогда по условию задачи нам требовалось найти значение той или иной величины.

В этот раз исходное и конечное значения нам уже даны. Поэтому в задачах будет требоваться найти проценты. Точнее, на сколько процентов изменилась та или иная величина. Давайте попробуем.

Задача. Кроссовки стоили 3200 рублей. После повышения цены они стали стоить 4000 рублей. На сколько процентов была повышена цена на кроссовки?

Итак, решаем через пропорцию. Первый шаг — исходная цена была равна 3200 рублей. Следовательно, 3200 рублей — это 100%.

Кроме того, нам дана конечная цена — 4000 рублей. Это неизвестное количество процентов, поэтому обозначим его за x. Получим следующую конструкцию:

3200 — 100%
4000 — x%

Что ж, условие задачи записано. Составляем пропорцию:

Дробь слева прекрасно сокращается на 100: 3200 : 100 = 32; 4000 : 100 = 40. Кроме того, можно сократить на 4: 32 : 4 = 8; 40 : 4 = 10. Получим следующую пропорцию:

Воспользуемся основным свойством пропорции: произведение крайних членов равно произведению средних. Получаем:

8 · x = 100 · 10;
8x = 1000.

Это обычное линейное уравнение. Отсюда находим x:

x = 1000 : 8 = 125

Итак, мы получили итоговый процент x = 125. Но является ли число 125 решением задачи? Нет, ни в коем случае! Потому что в задачи требуется узнать, на сколько процентов была повышена цена на кроссовки.

На сколько процентов — это значит, что нам нужно найти изменение:

∆ = 125 − 100 = 25

Получили 25% — именно настолько была повышена исходная цена. Это и является ответом: 25.

Задача B2 на проценты №2

Переходим ко второй задаче.

Задача. Рубашка стоила 1800 рублей. После снижения цены она стала стоить 1530 рублей. На сколько процентов была снижена цена на рубашку?

Переводим условие на математический язык. Исходная цена 1800 рублей — это 100%. А итоговая цена 1530 рублей — она нам известна, но неизвестно, сколько процентов она составляет от исходной величины. Поэтому обозначим ее за x. Получим следующую конструкцию:

1800 — 100%
1530 — x%

На основе полученной записи составляем пропорцию:

Давайте для упрощения дальнейших вычислений разделим обе части данного уравнения на 100. Другими словами, у числителя левой и правой дроби мы зачеркнем два нуля. Получим:

Теперь снова воспользуемся основным свойством пропорции: произведение крайних членов равно произведению средних.

18 · x = 1530 · 1;
18x = 1530.

Осталось найти x:

x = 1530 : 18 = (765 · 2) : (9 · 2) = 765 : 9 = (720 + 45) : 9 = 720 : 9 + 45 : 9 = 80 + 5 = 85

Как видите, мы не стали считать полученное частное уголком, а просто несколько раз сократили нашу дробь.

Расчет процентов в программе Microsoft Excel

При этом нам потребовалось разложить на множители числитель и

Мы получили, что x = 85. Но, как и в прошлой задаче, это число само по себе не является ответом. Давайте вернемся к нашему условию. Теперь мы знаем, что новая цена, полученная после снижения, составляет 85% от старой. И для того, чтобы найти изменения, нужно из старой цены, т.е. 100%, вычесть новую цену, т.е. 85%. Получим:

∆ = 100 − 85 = 15

Это число и будет ответом: Обратите внимание: именно 15, а ни в коем случае не 85. Вот и все! Задача решена.

Внимательные ученики наверняка спросят: почему в первой задаче мы при нахождении разности вычитали из конечного числа начальное, а во второй задаче поступили в точности до наоборот: из исходных 100% вычли конечные 85%?

Давайте проясним этот момент. Формально, в математике изменением величины всегда называется разность между конечным значением и начальным. Другими словами, во второй задаче у нас должно было получиться не 15, а −15.

Однако этот минус ни в коем случае не должен попасть в ответ, потому что он уже учтен в условии исходной задачи. Там прямо сказано о снижении цены. А снижение цены на 15% — это то же самое, что повышение цены на −15%. Именно поэтому в решении и ответе задачи достаточно написать просто 15 — без всяких минусов.

Все, надеюсь, с этим моментом мы разобрались. На этом наш сегодняшний урок закончен. До новых встреч!

Смотрите также:

  1. Задачи на проценты: стандартный расчет с помощью пропорций
  2. Процент: неизвестно начальное значение (метод пропорции)
  3. Как решать квадратные уравнения
  4. Теорема Виета
  5. Репетитор по математике и помощь экстернату
  6. Семинар: ЕГЭ по математике, задачи B3 на площади

Например, вычислить, сколько процентов составляет число 52 от числа 400.

По правилу: 52 : 400 * 100 — 13 (%).

Обычно такие отношения встречаются в задачах, когда величины заданы, а нужно определить, на сколько процентов вторая величина больше или меньше первой (в вопросе задачи: на сколько процентов перевыполнили задание; на сколько процентов выполнили работу; на сколько процентов снизилась или повысилась цена и т. д.).

Решения задач на процентное отношение двух чисел редко предполагают только одно действие.

Как посчитать проценты в Excel

Чаше решение таких задач состоит из 2-3 действий.

Примеры.

1. Завод должен был за месяц изготовить 1 200 изделий, а изготовил 2 300 изделий. На сколько процентов завод перевыполнил план?

1-й вариант
Решение:
1 200 изделий — это план завода, или 100% плана.
1) Сколько изделий изготовил завод сверх плана?
2 300 — 1 200 = 1 100 (изд.)

2) Сколько процентов от плана составят сверхплановые изделия?
1 100 от 1 200 => 1 100 : 1 200 * 100 = 91,7 (%).

2-й вариант
Решение:
1) Сколько процентов составляет фактический выпуск изделий по сравнению с плановым?
2 300 от 1 200 => 2 300 : 1 200 * 100 = 191,7 (%).

2) На сколько процентов перевыполнен план?
191,7 — 100 = 91,7 (%)
Ответ: на 91,7%.

2. Урожайность пшеницы в хозяйстве за предыдущий год составила 42 ц/га и была занесена в план следующего года. В следующем году урожайность снизилась до 39 ц/га. На сколько процентов был выполнен план следующего года?

1-й вариант
Решение:

42 ц/га — это план хозяйства на этот год, или 100% плана.

1) На сколько снизилась урожайность по сравнению
с планом?
42 — 39 = 3 (ц/га)

2) На сколько, процентов план не довыполнен?
3 от 42 => 3 : 42 * 100 = 7.1 (%).

3) Насколько процентов выполнен план этого года?

100 — 7,1 = 92,9 (%)

2-й вариант
Решение:
1) Сколько процентов составляет урожайность этого гола по сравнению с планом?
39 от 42 39 : 42 • 100 — 92,9 (%).
Ответ: 92,9%.

Задачи на проценты: считаем проценты с помощью пропорции

В прошлом видеоуроке мы рассматривали решение задач на проценты с помощью пропорций. Тогда по условию задачи нам требовалось найти значение той или иной величины.

В этот раз исходное и конечное значения нам уже даны. Поэтому в задачах будет требоваться найти проценты. Точнее, на сколько процентов изменилась та или иная величина. Давайте попробуем.

Задача. Кроссовки стоили 3200 рублей. После повышения цены они стали стоить 4000 рублей. На сколько процентов была повышена цена на кроссовки?

Итак, решаем через пропорцию. Первый шаг — исходная цена была равна 3200 рублей. Следовательно, 3200 рублей — это 100%.

Кроме того, нам дана конечная цена — 4000 рублей.

Как найти процент от числа/суммы в Excel

Это неизвестное количество процентов, поэтому обозначим его за x. Получим следующую конструкцию:

3200 — 100%
4000 — x%

Что ж, условие задачи записано. Составляем пропорцию:

Дробь слева прекрасно сокращается на 100: 3200 : 100 = 32; 4000 : 100 = 40. Кроме того, можно сократить на 4: 32 : 4 = 8; 40 : 4 = 10. Получим следующую пропорцию:

Воспользуемся основным свойством пропорции: произведение крайних членов равно произведению средних. Получаем:

8 · x = 100 · 10;
8x = 1000.

Это обычное линейное уравнение. Отсюда находим x:

x = 1000 : 8 = 125

Итак, мы получили итоговый процент x = 125. Но является ли число 125 решением задачи? Нет, ни в коем случае! Потому что в задачи требуется узнать, на сколько процентов была повышена цена на кроссовки.

На сколько процентов — это значит, что нам нужно найти изменение:

[ad010]

∆ = 125 − 100 = 25

Получили 25% — именно настолько была повышена исходная цена. Это и является ответом: 25.

Задача B2 на проценты №2

Переходим ко второй задаче.

Задача. Рубашка стоила 1800 рублей. После снижения цены она стала стоить 1530 рублей. На сколько процентов была снижена цена на рубашку?

Переводим условие на математический язык. Исходная цена 1800 рублей — это 100%. А итоговая цена 1530 рублей — она нам известна, но неизвестно, сколько процентов она составляет от исходной величины. Поэтому обозначим ее за x. Получим следующую конструкцию:

1800 — 100%
1530 — x%

На основе полученной записи составляем пропорцию:

Давайте для упрощения дальнейших вычислений разделим обе части данного уравнения на 100. Другими словами, у числителя левой и правой дроби мы зачеркнем два нуля. Получим:

Теперь снова воспользуемся основным свойством пропорции: произведение крайних членов равно произведению средних.

18 · x = 1530 · 1;
18x = 1530.

Осталось найти x:

x = 1530 : 18 = (765 · 2) : (9 · 2) = 765 : 9 = (720 + 45) : 9 = 720 : 9 + 45 : 9 = 80 + 5 = 85

Как видите, мы не стали считать полученное частное уголком, а просто несколько раз сократили нашу дробь. При этом нам потребовалось разложить на множители числитель и

Мы получили, что x = 85. Но, как и в прошлой задаче, это число само по себе не является ответом. Давайте вернемся к нашему условию. Теперь мы знаем, что новая цена, полученная после снижения, составляет 85% от старой. И для того, чтобы найти изменения, нужно из старой цены, т.е. 100%, вычесть новую цену, т.е. 85%. Получим:

∆ = 100 − 85 = 15

Это число и будет ответом: Обратите внимание: именно 15, а ни в коем случае не 85. Вот и все! Задача решена.

Внимательные ученики наверняка спросят: почему в первой задаче мы при нахождении разности вычитали из конечного числа начальное, а во второй задаче поступили в точности до наоборот: из исходных 100% вычли конечные 85%?

Давайте проясним этот момент. Формально, в математике изменением величины всегда называется разность между конечным значением и начальным. Другими словами, во второй задаче у нас должно было получиться не 15, а −15.

Однако этот минус ни в коем случае не должен попасть в ответ, потому что он уже учтен в условии исходной задачи. Там прямо сказано о снижении цены. А снижение цены на 15% — это то же самое, что повышение цены на −15%. Именно поэтому в решении и ответе задачи достаточно написать просто 15 — без всяких минусов.

Все, надеюсь, с этим моментом мы разобрались. На этом наш сегодняшний урок закончен. До новых встреч!

Смотрите также:

  1. Задачи на проценты: стандартный расчет с помощью пропорций
  2. Процент: неизвестно начальное значение (метод пропорции)
  3. Как решать квадратные уравнения
  4. Теорема Виета
  5. Репетитор по математике и помощь экстернату
  6. Семинар: ЕГЭ по математике, задачи B3 на площади

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

ya krevedko