Виды полимеров и их применение

Виды полимеров и их применение

Основы сварочного дела

Основные виды полимеров и пластмасс

Полимеры и пластмассы, обла­дая целым рядом ценных свойств (достаточная прочность, антикорро — зионность, стойкость против хими­чески агрессивных сред, теплостой­кость и др.), получают большое при­менение в самых различных отраслях народного хозяйства не только как за­менители дефицитных металлов, но и как основные конструкционные материалы.

Полимер — высокомолекулярное органическое соединение, характери­зующееся многократным повторением одного или более составных звеньев (составное звено — группа атомов, с помощью которой описывают строение цепи макромолекулы). В зависи­мости от структуры и формы макро­молекул различают термопластичные и термореактивные полимеры. Термо­пластичные полимеры плавятся до вязкотекучего состояния без измене­ния структуры; они поддаются повтор­ному нагреву и технологической об­работке. Термореактивные полимеры при нагреве изменяют свою струк­туру, в результате исключается их повторное размягчение.

Полиэтилен — полимер этилена, термопластичен; изделия из него могут быть изготовлены литьем под давлени­ем или центробежным, штампов­кой при температуре 120… 135 °С и прессованием. Он обладает высокой химической стойкостью к агрессивным средам и является хорошим ди­электриком. Применяется при изго­товлении изоляции подводных, сило­вых и радиочастотных кабелей, а так­же оборудования химических произ­водств: труб, емкостей, плит, фитин­гов, тонкостенных деталей и др.

Полистирол — полимер стирола, термопластичен, отличается очень хо­рошими диэлектрическими свойства­ми, прозрачен, водостоек, морозо­стоек. Недостатками полистирола яв­ляются низкая теплостойкость, горю­честь и хрупкость. Полистирол слу­жит материалом для изготовления ра­дио* и электроаппаратуры, высокоча­стотных приборов и химической аппа­ратуры. Его применяют также для изготовления электроизоляционных пленок, нитей и упаковочной пленки.

Полиакрилат — полимер сложного эфира акриловой кислоты. Наиболь­шее применение получили листовые акриловые материалы (органическое стекло различных марок). Кроме того, выпускают заготовки в виде стержней, труб, листов и материалов для изго­товления деталей прессованием или литьем под давлением.

П олимегшшетакрилат (органиче­ское стекло) — отличается высокой светопроницаемостью, удовлетвори­тельными прочностью и твердостью. Важным свойством органического стекла является его способность про­пускать ультрафиолетовые лучи. Сле­дует также отметить хорошую обра­батываемость резанием, давлением, сваркой. Применяют органическое стекло для остекления, изготовления различных изделий технического на­значения.

Пластмасса представляет собой композицию полимера с различными ингредиентами заполнителями, пла­стификаторами, стабилизаторами, красителями, отвердителями и др.

Фенопласты — пластмассы на ос­нове фенольных смол. В зависимости от технологии изготовления могут быть термопластичными и термореак­тивными. В сочетании с различными наполнителями получают фенопласты общетехнического назначения, элек­троизоляционные, жаростойкие, воло­книстые, фрикционные и др. Б ка­честве наполнителей применяют по­рошкообразные, волокнистые и слои­стые материалы. Детали из фенопла­стов изготовляются методом горячего прессования при температуре 150… 200 °С и давлении 15…120 МПа. При этом получают готовые изделия, не требующие механической обработки.

Из термореактивных фенопластов с порошкообразным наполнителем изготовляют различные детали ра­дио — и электротехнических изделий, электронной аппаратуры. Из ораоЛи — та (наполнитель — асбест, кварце­вый песок или графит) изготовляют кислотостойкие трубы, ванны, детали коммуникаций. Для получения изде­лий общетехнического назначения в качестве наполнителя применяют дре­весную муку.

Из фенопластов с волокнистым на­полнителем большое применение полу­чили волокниты, текстолит-крошка и стекловолокнит. Они применяются для изготовления деталей, работа­ющих на изгиб и кручение и требу­ющих хороших механических и анти­фрикционных свойств (шестерни, втулки, ролики, кулачки, вкладыши подшипников и др.).

Из слоистых фенопластов в про­мышленности большое распростране­ние получили текстолит (наполни­тель— хлопчатобумажная ткань), ДСП — (наполнитель — древесный шпон) и гетинакс (наполнитель — сульфатная бумага). Эти пласт­массы обладают большей проч­ностью, чем волокнистые. Особенно высокой прочностью обладает тексто­лит. Его применяют для изготовле­ния шестерен, подшипников, вклады­шей и других нагруженных деталей. ДСП используют как конструкцион­ный и антифрикционный материал. Гетинакс используют в качестве электроизоляционного материала.

Аминопласты —термореактивные пластмассы на основе аминосмол.

Post navigation

Они бесцветны, прозрачны и могут быть окрашены в любые (особенно светлые) тона с помощью кра­сителей. В качестве наполнителей применяют сульфидную целлюлозу, хлопковую целлюлозу, асбест, тальк и др. Изделия из аминопластов получают методами горячего и холод­ного прессования при различных режимах. Температура горячего прес­сования 135…145°С, давление 10,5…42 МПа, время выдержки 1мин на 1 мм толщины изделия.

Аминопласты применяют главным образом для изготовления электро­арматуры, радиодеталей, предметов широкого потребления (посуда, кан­целярские и галантерейные товары и др.), а также для отделки магазинов, ателье, кают пароходов, железнодо­рожных вагонов.

Пластмассы на основе поливинил — хлорида получают добавлением на­полнителей, пластификаторов и кра­сителей. Наполнители повышают ме­ханическую прочность пластиката и снижают его стоимость. Для по­вышения гибкости и пластичности, а также хорошего смешения составля­ющих, в смесь вводят 30…60% пла­стификатора (дибутилфталата). Об­работкой такой смеси на вальцах получают мягкий листовой материал толщиной от 0,1 до нескольких мил­лиметров. Пластикат используют как футеровочный и электроизоляцион­ный материалы, а также для изго­товления труб с толщиной стенки 0,3…10 мм. В строительстве поли — винилхлорид идет для производства полихлорвинилового линолеума, поли­хлорвиниловой пленки и др.

Винипласт — жесткий материал, получаемый путем обработки непла — стифицированного поливинилхлорида со стабилизаторами и смазывающими веществами при температуре 160… 180 °С; обладает большой прочностью, твердостью, хорошими диэлектриче­скими свойствами и высокой хими­ческой стойкостью. Винипласт легко поддается обработке резанием, свар­ке, склеиванию; получил большое применение в различных отраслях на­родного хозяйства, особенно в химиче­ской промышленности. Из винипласта изготовляют трубы, вентили, краны, фитинги. Винипластовые пленки при­меняют для футеровки химической ап­паратуры, электролизных ванн и др.

В последнее время с появлением китайской техники на мировом рынке, сварочный аппарат стал наиболее популярным инструментом у владельцев частных домов, коттеджей, дач и гаражей. Учитывая соотношение цен на приобретение сварки …

Выполнение сварочных работ на строительно-монтажной площадке требует особо четкого выполнения всех правил безопасности производ­ства работ. Сварочные работы на высоте с лесов, подмостей и люлек разрешается производить только по­сле проверки этих …

Из применяемых средств контроля особую опасность представляют рент­геновские и гамма-лучи. Рентгенов­ские и гамма-лучи опасны для человека при продолжительном облу­чении и большой дозе. Предельно ДО­пустимая доза, которая не вызывает необратимых изменений …

Биополимеры лежат в основе живых организмов и задействованы почти во всех процессах жизнедеятельности.

Широко распространено 12 марок полимеров.

Наиболее активно используется полиэтилен. Он относится к синтетическим термопластичным неполярным полимерам класса полиолефинов. Его получают полимеризацией этилена.

Еще один термопластичный неполярный, получивший обширное применение полимер – полипропилен. Это синтетическое вещество класса полиолефинов, получаемое в результате полимеризации пропилена. Как и полиэтилен, полипропилен – белое твердое вещество.

Путем поликонденсации терефталевой кислоты и моноэтиленгликоля получают синтетический термопластичный линейный полимер класса полиэфиров – полиэтилентерефталат.

Широкое применение получил и полистирол. Он представляет из себя жесткий синтетический термопластичный аморфный полимер и является продуктом полимеризации стирола.

Еще один линейный термопластичный полимер, незаменимый в быту и промышленности – поливинилхлорид. Это полимер винилхлорида _СН2_СНСl_. Поливинилхлорид – это пластик белого цвета с молекулярной массой 6000 – 160.000, степенью кристалличности 10 – 35%, плотностью 1.35 – 1.43 г/см3. Это физиологически безвредное вещество.

АБС пластик получил свое название по начальным буквам названий мономеров: акрилонитрила, бутадиена, стирола.

Виды полимерных материалов, особенности их свойств

Является термопластичным аморфным тройным сополимером.

Активно применяются также синтетические гетероцепные полимеры, полиуретаны. В состав основных цепей этих полимеров входят макромолекулы уретановой группировки _NH_CO_O_.

Еще один вид синтетических термопластичных полимеров класса фторолефинов – фторопласт. В состав фторопласта входят атомы фтора, характеризующиеся высокими показателями химической стойкости

Пенопласт – вспененная или ячеистая пластмасса. Этот полимер наполнен газом и представляет из себя композиционные материалы с матрицей из полимерных пленок. Полимерные пленки образуют ребра и стенки пор, наполненных газом.

Фенопласт относится к термореактивным пластмассам, в основе которых лежат фенолоальдегидные смолы (в частности, фенолоформальдегидные) и включают в себя разнообразные наполнители, отвердители и некоторые другие добавки.

Полиамиды – представители многочисленной группы гетероцепных высокомолекулярных соединений. Химические звенья полиамидов соединяются амидной связью _NH_CO_.

Нашли свое широкое применение и поликарбонаты, полиэфиры диоксисоединений и угольной кислоты.

Основы сварочного дела

Основные виды полимеров и пластмасс

Полимеры и пластмассы, обла­дая целым рядом ценных свойств (достаточная прочность, антикорро — зионность, стойкость против хими­чески агрессивных сред, теплостой­кость и др.), получают большое при­менение в самых различных отраслях народного хозяйства не только как за­менители дефицитных металлов, но и как основные конструкционные материалы.

Полимер — высокомолекулярное органическое соединение, характери­зующееся многократным повторением одного или более составных звеньев (составное звено — группа атомов, с помощью которой описывают строение цепи макромолекулы). В зависи­мости от структуры и формы макро­молекул различают термопластичные и термореактивные полимеры. Термо­пластичные полимеры плавятся до вязкотекучего состояния без измене­ния структуры; они поддаются повтор­ному нагреву и технологической об­работке. Термореактивные полимеры при нагреве изменяют свою струк­туру, в результате исключается их повторное размягчение.

Полиэтилен — полимер этилена, термопластичен; изделия из него могут быть изготовлены литьем под давлени­ем или центробежным, штампов­кой при температуре 120… 135 °С и прессованием. Он обладает высокой химической стойкостью к агрессивным средам и является хорошим ди­электриком. Применяется при изго­товлении изоляции подводных, сило­вых и радиочастотных кабелей, а так­же оборудования химических произ­водств: труб, емкостей, плит, фитин­гов, тонкостенных деталей и др.

Полистирол — полимер стирола, термопластичен, отличается очень хо­рошими диэлектрическими свойства­ми, прозрачен, водостоек, морозо­стоек. Недостатками полистирола яв­ляются низкая теплостойкость, горю­честь и хрупкость. Полистирол слу­жит материалом для изготовления ра­дио* и электроаппаратуры, высокоча­стотных приборов и химической аппа­ратуры. Его применяют также для изготовления электроизоляционных пленок, нитей и упаковочной пленки.

Полиакрилат — полимер сложного эфира акриловой кислоты. Наиболь­шее применение получили листовые акриловые материалы (органическое стекло различных марок). Кроме того, выпускают заготовки в виде стержней, труб, листов и материалов для изго­товления деталей прессованием или литьем под давлением.

П олимегшшетакрилат (органиче­ское стекло) — отличается высокой светопроницаемостью, удовлетвори­тельными прочностью и твердостью. Важным свойством органического стекла является его способность про­пускать ультрафиолетовые лучи. Сле­дует также отметить хорошую обра­батываемость резанием, давлением, сваркой. Применяют органическое стекло для остекления, изготовления различных изделий технического на­значения.

Пластмасса представляет собой композицию полимера с различными ингредиентами заполнителями, пла­стификаторами, стабилизаторами, красителями, отвердителями и др.

Фенопласты — пластмассы на ос­нове фенольных смол. В зависимости от технологии изготовления могут быть термопластичными и термореак­тивными. В сочетании с различными наполнителями получают фенопласты общетехнического назначения, элек­троизоляционные, жаростойкие, воло­книстые, фрикционные и др. Б ка­честве наполнителей применяют по­рошкообразные, волокнистые и слои­стые материалы.

Классификация полимеров, типы полимеров и их применение

Детали из фенопла­стов изготовляются методом горячего прессования при температуре 150… 200 °С и давлении 15…120 МПа. При этом получают готовые изделия, не требующие механической обработки.

Из термореактивных фенопластов с порошкообразным наполнителем изготовляют различные детали ра­дио — и электротехнических изделий, электронной аппаратуры. Из ораоЛи — та (наполнитель — асбест, кварце­вый песок или графит) изготовляют кислотостойкие трубы, ванны, детали коммуникаций. Для получения изде­лий общетехнического назначения в качестве наполнителя применяют дре­весную муку.

Из фенопластов с волокнистым на­полнителем большое применение полу­чили волокниты, текстолит-крошка и стекловолокнит. Они применяются для изготовления деталей, работа­ющих на изгиб и кручение и требу­ющих хороших механических и анти­фрикционных свойств (шестерни, втулки, ролики, кулачки, вкладыши подшипников и др.).

Из слоистых фенопластов в про­мышленности большое распростране­ние получили текстолит (наполни­тель— хлопчатобумажная ткань), ДСП — (наполнитель — древесный шпон) и гетинакс (наполнитель — сульфатная бумага). Эти пласт­массы обладают большей проч­ностью, чем волокнистые. Особенно высокой прочностью обладает тексто­лит. Его применяют для изготовле­ния шестерен, подшипников, вклады­шей и других нагруженных деталей. ДСП используют как конструкцион­ный и антифрикционный материал. Гетинакс используют в качестве электроизоляционного материала.

Аминопласты —термореактивные пластмассы на основе аминосмол. Они бесцветны, прозрачны и могут быть окрашены в любые (особенно светлые) тона с помощью кра­сителей. В качестве наполнителей применяют сульфидную целлюлозу, хлопковую целлюлозу, асбест, тальк и др. Изделия из аминопластов получают методами горячего и холод­ного прессования при различных режимах. Температура горячего прес­сования 135…145°С, давление 10,5…42 МПа, время выдержки 1мин на 1 мм толщины изделия.

Аминопласты применяют главным образом для изготовления электро­арматуры, радиодеталей, предметов широкого потребления (посуда, кан­целярские и галантерейные товары и др.), а также для отделки магазинов, ателье, кают пароходов, железнодо­рожных вагонов.

Пластмассы на основе поливинил — хлорида получают добавлением на­полнителей, пластификаторов и кра­сителей. Наполнители повышают ме­ханическую прочность пластиката и снижают его стоимость. Для по­вышения гибкости и пластичности, а также хорошего смешения составля­ющих, в смесь вводят 30…60% пла­стификатора (дибутилфталата). Об­работкой такой смеси на вальцах получают мягкий листовой материал толщиной от 0,1 до нескольких мил­лиметров. Пластикат используют как футеровочный и электроизоляцион­ный материалы, а также для изго­товления труб с толщиной стенки 0,3…10 мм. В строительстве поли — винилхлорид идет для производства полихлорвинилового линолеума, поли­хлорвиниловой пленки и др.

Винипласт — жесткий материал, получаемый путем обработки непла — стифицированного поливинилхлорида со стабилизаторами и смазывающими веществами при температуре 160… 180 °С; обладает большой прочностью, твердостью, хорошими диэлектриче­скими свойствами и высокой хими­ческой стойкостью. Винипласт легко поддается обработке резанием, свар­ке, склеиванию; получил большое применение в различных отраслях на­родного хозяйства, особенно в химиче­ской промышленности. Из винипласта изготовляют трубы, вентили, краны, фитинги. Винипластовые пленки при­меняют для футеровки химической ап­паратуры, электролизных ванн и др.

В последнее время с появлением китайской техники на мировом рынке, сварочный аппарат стал наиболее популярным инструментом у владельцев частных домов, коттеджей, дач и гаражей. Учитывая соотношение цен на приобретение сварки …

Выполнение сварочных работ на строительно-монтажной площадке требует особо четкого выполнения всех правил безопасности производ­ства работ.

Сварочные работы на высоте с лесов, подмостей и люлек разрешается производить только по­сле проверки этих …

Из применяемых средств контроля особую опасность представляют рент­геновские и гамма-лучи. Рентгенов­ские и гамма-лучи опасны для человека при продолжительном облу­чении и большой дозе. Предельно ДО­пустимая доза, которая не вызывает необратимых изменений …

Состав, классификация и строение полимеров, их применение в различных отраслях промышленности и в быту. Химические свойства полимеров, способность к значительным механическим обратимым высокоэластическим деформациям, к образованию анизотропных структур.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Введение

1. Состав полимеров

2. Классификация полимеров

3. Строение полимеров

4. Свойства полимеров

5. Применение полимеров

Список использованной литературы

Введение

Полимеры — это высокомолекулярные вещества, без которых сегодня трудно представить науку и технику, удобство и комфорт, молекулы которых состоят из повторяющихся структурных элементов — звеньев, соединенных в цепочки химическими связями, в количестве, достаточном для возникновения специфических свойств. К специфическим свойствам следует отнести следующие способности: способность к значительным механическим обратимым высокоэластическим деформациям; к образованию анизотропных структур; к образованию высоковязких растворов при взаимодействии с растворителем; к резкому изменению свойств при добавлении ничтожных добавок низкомолекулярных веществ. Такие материалы служат достойной заменой металлов.

1. Состав полимеров

Полимеры — это вещества, макромолекулы которых состоят из многочисленных повторяющихся элементарных звеньев, которые представляют одинаковую группу атомов. Молекулярная масса молекул составляет от 500 до 1000000. В молекулах полимеров различают главную цепь, которая построена из большого числа атомов.

Основные виды полимерных материалов в строительстве

Боковые цепи имеют меньшую протяженность.

Полимеры, главная цепь которых содержит одинаковые атомы, называют гомоцепными, а если атомы углерода — карбоцепными. Полимеры, в главной цепи которых содержатся различные атомы, называют гетероцепными.

Макромолекулы полимеров по форме делят на линейные, разветвленные, плоские, ленточные, пространственные, как показано на Рисунке 1.

Молекулы полимеров получают из исходных низкомолекулярных продуктов — мономеров — полимеризацией и поликонденсацией. К полимерам поликонденсационного типа относятся фенолформальдегидные смолы, полиэфиры, полиуретаны, эпоксидные смолы. К высокомолекулярным соединениям полимеризационного типа относятся поливинилхлорид, полиэтилен, полистирол, полипропилен. Высокополимерные и высокомолекулярные соединения являются основой органической природы — животных и растительных клеток, состоящих из белка.

Рисунок 1 — Структуры молекул полимеров:

а) линейная, б) разветвленная, в) ленточная, г) плоская, д) пространственная

2. Классификация полимеров

По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами.

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.

Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним звеньям макромолекулы одного химического строения могут быть присоединены цепи другого строения. Такие сополимеры называются привитыми.

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров — полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид.

3. Строение полимеров

Эластомеры

Эластомеры — это синтетические материалы с эластическими свойствами. Они без труда изменяют свою форму; если напряжение снимается, то они снова принимают свою первоначальную форму. Эластомеры отличаются от других эластичных синтетических материалов тем, что их эластичность в большей степени зависит от температуры.

Эластомеры состоят из пространственно-сетчатых макромолекул. Молекулярная сетка у эластомеров имеет широкие ячейки. При изменении формы, ячейки раздвигаются, не разрушая места связи. После снятия напряжения ячейки, подобно резине, притягиваются в свое первоначальное положение, синтетический материал снова принимает свою первоначальную форму.

Резина

Резина — продукт вулканизации каучука. Техническая резина — композиционный материал, который может содержать до 15-20 ингредиентов, выполняющих разнообразные функции. Основное отличие резины от других полимерных материалов — способность к большим обратимым высокоэластическим деформациям в широком интервале температур, включающем комнатную и более низкие температуры. Необратимая, или пластическая, составляющая деформации резины намного меньше, чем у каучука, поскольку макромолекулы каучука соединены в резине поперечными химическими связями (вулканизационная сетка). Резина (продукт вулканизации каучука) превосходит каучук по прочностным свойствам, тепло- и морозостойкости, устойчивости к действию агрессивных сред и др.

Пластмассы

Пластмассы — это органические материалы на основе полимеров, которые способны при нагреве размягчаться и под давлением принимать определенную устойчивую форму. Простые пластмассы состоят из одних химических полимеров. Сложные пластмассы включают добавки: наполнители, пластификаторы, красители, отвердители, катализаторы. Пластмассы выпускаются монолитными — в виде термопластичных и термореактивных, газонаполненными — ячеистой структуры.

К термопластичным пластмассам относят полиэтилен низкого давления, полипропилен, ударопрочный полистирол, поливинилхлорид, стеклопластики, полиамиды и др.

К термореактивным пластмассам относятся: жесткие пенополиуретаны, аминопласты и др.

К газонаполненным пластмассам относятся пенополиуретаны — газонаполненный сверхлегкий конструкционный материал.

полимер химический свойство

4. Свойства полимеров

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.

Свойства пластмасс

Пластмассы характеризуются малой плотностью, чрезвычайно низкими электрической и тепловой проводимостями, не очень большой механической прочностью. При нагревании они разлагаются. Не чувствительны к влажности, устойчивы к действию сильных кислот и оснований. Физиологически почти безвредны.

Свойства пластмасс можно модифицировать методами сополимеризации или стереоспецифической полимеризации, путём сочетания различных пластмасс друг с другом или с другими материалами, такими как стеклянное волокно, текстильная ткань, введением наполнителей и красителей, пластификаторов, а также варьированием сырья, например использование соответствующих.

Для придания особых свойств пластмассе, в неё добавляют пластификаторы (силикон и т. п.), антипирены, антиоксиданты (непредельные углеводороды).

Свойства резин

Важное свойство резины — эластичность, способность к большим обратимым деформациям в широком интервале температур. На молекулярном уровне это объясняется тем, что при деформации цепочки молекул вытягиваются и скользят друг относительно друга, после снятия нагрузки молекулярные цепи под действием теплового движения принимают прежнее свое положение, соответствующее изначальному, но все же они незначительно смещаются. Это изменение положений молекулярных цепей характеризует остаточную деформацию. Резина обладает высокой упругостью, имеет высокую деформируемость. Резина обладает небольшой твердостью, которая определяется содержанием в ней наполнителей и пластификаторов, а также степенью вулканизации. Резины хорошо сопротивляются износу, отлично изолируют тепло и звук. Они хорошие диамагнетики и диэлектрики. Существуют резины с масло-, бензо-, водо-, паро-, термостойкостью, а также стойкостью к агрессивным средам и к утомлению (снижение механических свойств).

5. Применение полимеров

Полимеры применяются во всех сферах жизнедеятельности человека:

Активное применение полимеров в сельском хозяйстве позволяет не терять урожай из-за погода, а увеличивать его примерно на 30%. Например теплицы.

[ad010]

В спорте, где традиционно принято играть на траве (футбол, теннис, крокет) без полимеров не обойтись, из них производят искусственную траву.

Однако — главный потребитель чуть ли не всех материалов, производимых в нашей стране, в том числе и полимеров это промышленность. Использование полимерных материалов в машиностроении растет такими темпами, какие не знают прецедента во всей человеческой истории. К примеру, в 1976 1. машиностроение нашей страны потребило 800000 т пласт масс, а в 1960 г. — всего 116 000 т. При этом интересно отметить, что еще десять лет назад в машиностроение направлялось 37—38% всех выпускающихся в нашей стране пластмасс, а 1980 г. доля машиностроения в использовании пластмасс снизилась до 28%. И дело тут не в том, что могла бы снизится потребность, а в том, что другие отрасли народного хозяйства стали применять полимерные материалы в сельском хозяйстве, в строительстве, в легкой и пищевой промышленности еще более интенсивно.

Список использованной литературы

1. Материаловедение: Учебник для вузов / Б.Н. Арзамасов, В.И. Макарова, Г.Г. Мухин и др.; Под общ. Ред. Б.Н. Арзамасова, Г.Г. Мухина. — 7-е изд., стереотип. — М.: Изд-во МГТУ им. Н.Э. Баумана, 2005. — 648 с.: ил.

2. Горчаков Г.И., Баженов Ю.М. Строительные материалы/ Г.И. Поллер В.И. «Химия на пути в третье тысячелетие». — 1979. Ратинов А. М., Иванов Д.П «Химия в строительстве». Справочник.

3. Советский Васютин Д.О. «Полимеры».

4. Энциклопедический словарь.

5. http://www.e-reading-lib.org/chapter.php/99301/51/Buslaeva_-_Materialovedenie._Shpargalka.html

6. http://museion.ru/1.5/rezina.html

7. Свободная Энциклопедия Wikipedia.

Размещено на Allbest.ru

Подобные документы

  • Свойства полимеров

    Классификация, строение полимеров, их применение в различных отраслях промышленности и в быту. Реакция образования полимера из мономера — полимеризация. Формула получения полипропилена. Реакция поликонденсации. Получение крахмала или целлюлозы.

    разработка урока , добавлен 22.03.2012

  • Строение и свойства полимеров

    Особенности строения и свойств. Классификация полимеров. Свойства полимеров. Изготовление полимеров. Использование полимеров. Пленка. Мелиорация. Строительство. Коврики из синтетической травы. Машиностроение. Промышленность.

    реферат , добавлен 11.08.2002

  • Свойства и применение полимеров

    История развития науки о полимерах — высокомолекулярных соединений, веществ с большой молекулярной массой. Классификация и свойства органических пластических материалов. Примеры использования полимеров в медицине, сельском хозяйстве, машиностроении, быту.

    презентация , добавлен 09.12.2013

  • Основные химические свойства полимеров и реакции в полимерных цепях

    Особенности химических реакций в полимерах. Деструкция полимеров под действием тепла и химических сред. Химические реакции при действии света и ионизирующих излучений. Формирование сетчатых структур в полимерах. Реакции полимеров с кислородом и озоном.

    контрольная работа , добавлен 08.03.2015

  • Полиацителен, его свойства и особенности

    Формула и описание полиацителена, его место в классификации полимеров. Строение, физические и химические свойства полиацителена. Способ получения полиацетилена полимеризацией ацетилена или полимерана логичными превращениями из насыщенных полимеров.

    реферат , добавлен 05.04.2014

  • Физические свойства полимеров

    Физические и фазовые состояния и переходы. Термодинамика высокоэластической деформации. Релаксационные и механические свойства кристаллических полимеров. Теории их разрушения и долговечность. Стеклование, реология расплавов и растворов полимеров.

    контрольная работа , добавлен 08.03.2015

  • Современные направления развития композитов на основе полимеров

    Общая характеристика современных направлений развития композитов на основе полимеров. Сущность и значение армирования полимеров. Особенности получения и свойства полимерных композиционных материалов. Анализ физико-химических аспектов упрочнения полимеров.

    реферат , добавлен 27.05.2010

  • Полистирол

    Характеристика и классификация полимеров. Зарождение промышленности пластмасс, технологии производства полистирола. Физические и химические свойства. Надмолекулярная структура, конформация, конфигурация. Способы отверждения. Применение в промышленности.

    реферат , добавлен 30.12.2008

  • Фазовая (надмолекулярная) структура полимеров. Строение аморфного полимерного тела и его модели. Примеры аморфных полимеров. Модели кристаллического полимера. Типы кристаллических структур

    Молекулярное строение полимерного вещества (химическая структура), т. е. его состав и способ соединения атомов в молекуле. Предельный случай упорядочения кристаллических полимеров. Схема расположения кристаллографических осей в кристалле полиэтилена.

    контрольная работа , добавлен 02.09.2014

  • Прочностные и деформационные свойства полимеров

    Прочностные свойства полимеров. Значения измерений на твердость, их применение для оптимизации содержания пластификатора, вида наполнителя, условий переработки. Зависимость твердости полиамида от температуры. Теплопроводность полиметилметакрилата.

    реферат , добавлен 20.12.2016

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

ya krevedko